19 research outputs found

    NADPH Oxidases: Insights into Selected Functions and Mechanisms of Action in Cancer and Stem Cells

    Get PDF
    NADPH oxidases (NOX) are reactive oxygen species- (ROS-) generating enzymes regulating numerous redox-dependent signaling pathways. NOX are important regulators of cell differentiation, growth, and proliferation and of mechanisms, important for a wide range of processes from embryonic development, through tissue regeneration to the development and spread of cancer. In this review, we discuss the roles of NOX and NOX-derived ROS in the functioning of stem cells and cancer stem cells and in selected aspects of cancer cell physiology. Understanding the functions and complex activities of NOX is important for the application of stem cells in tissue engineering, regenerative medicine, and development of new therapies toward invasive forms of cancers

    Rapid genome editing by CRISPR-Cas9-POLD3 fusion

    Get PDF
    Precision CRISPR gene editing relies on the cellular homology-directed DNA repair (HDR) to introduce custom DNA sequences to target sites. The HDR editing efficiency varies between cell types and genomic sites, and the sources of this variation are incompletely understood. Here, we have studied the effect of 450 DNA repair protein-Cas9 fusions on CRISPR genome editing outcomes. We find the majority of fusions to improve precision genome editing only modestly in a locus- and cell-type specific manner. We identify Cas9-POLD3 fusion that enhances editing by speeding up the initiation of DNA repair. We conclude that while DNA repair protein fusions to Cas9 can improve HDR CRISPR editing, most need to be optimized to the cell type and genomic site, highlighting the diversity of factors contributing to locus-specific genome editing outcomes.Peer reviewe

    Off-label uses of drugs for depression

    No full text
    The prescription of drugs for depression is rising rapidly. One of the reasons for this trend is their many off-label uses. Up to one third of all prescriptions are for non-indicated use, which in addition to drug repurposing includes different dosing or duration than those recommended. In this review, we elaborate on what antidepressants can treat besides depression. The five classes of drugs for depression are introduced, and their mechanisms of action and serious side effects are described. The most common off-label uses of antidepressants are discussed, with a special focus on treating eating disorders, sleep problems, smoking cessation and managing chronic pain. Depression is often a comorbidity when antidepressants are chosen as therapy, but good therapeutic effects have been observed for other conditions also when depression is not involved. Finally, a new type of antidepressant developed from the hallucinogenic “party drug” ketamine is briefly introduced. This recent development suggests that antidepressants will keep playing a central role in medicine for years to come

    Adding nanotechnology to the metastasis treatment arsenal

    No full text
    Metastasis is a major cause of cancer-related mortality, accounting for 90% of cancer deaths. The explosive growth of cancer biology research has revealed new mechanistic network information and pathways that promote metastasis. Consequently, a large number of antitumor agents have been developed and tested for their antimetastatic efficacy. Despite their exciting cytotoxic effects on tumor cells in vitro and antitumor activities in preclinical studies in vivo, only a few have shown potent antimetastatic activities in clinical trials. In this review, we provide a brief overview of current antimetastatic strategies that show clinical efficacy and review nanotechnology-based approaches that are currently being incorporated into these therapies to mitigate challenges associated with treating cancer metastasis.Funding agencies: EU H2020 Marie Sklodowska-Curie Individual Fellowship [706694]; Wolfson College (University of Cambridge, UK); MIIC Seed Grant from Linkoping University (LiU), Sweden</p

    Adding Nanotechnology to the Metastasis Treatment Arsenal.

    No full text
    Metastasis is a major cause of cancer-related mortality, accounting for 90% of cancer deaths. The explosive growth of cancer biology research has revealed new mechanistic network information and pathways that promote metastasis. Consequently, a large number of antitumor agents have been developed and tested for their antimetastatic efficacy. Despite their exciting cytotoxic effects on tumor cells in vitro and antitumor activities in preclinical studies in vivo, only a few have shown potent antimetastatic activities in clinical trials. In this review, we provide a brief overview of current antimetastatic strategies that show clinical efficacy and review nanotechnology-based approaches that are currently being incorporated into these therapies to mitigate challenges associated with treating cancer metastasis

    DNMT3B deficiency alters mitochondrial biogenesis and α‐ketoglutarate levels in human embryonic stem cells

    No full text
    Embryonic stem cell renewal and differentiation is regulated by metabolites that serve as cofactors for epigenetic enzymes. An increase of α‐ketoglutarate (α‐KG), a cofactor for histone and DNA demethylases, triggers multilineage differentiation in human embryonic stem cells (hESCs). To gain further insight into how the metabolic fluxes in pluripotent stem cells can be influenced by inactivating mutations in epigenetic enzymes, we generated hESCs deficient for de novo DNA methyltransferases (DNMTs) 3A and 3B. Our data reveal a bidirectional dependence between DNMT3B and α‐KG levels: a‐KG is significantly upregulated in cells deficient for DNMT3B, while DNMT3B expression is downregulated in hESCs treated with α‐KG. In addition, DNMT3B null hESCs exhibit a disturbed mitochondrial fission and fusion balance and a switch from glycolysis to oxidative phosphorylation. Taken together, our data reveal a novel link between DNMT3B and the metabolic flux of hESCs

    Electroactive polymer scaffolds for cardiac tissue engineering

    No full text
    By-pass surgery and heart transplantation are traditionally used to restore the heart’s functionality after a myocardial Infarction (MI or heart attack) that results in scar tissue formation and impaired cardiac function. However, both procedures are associated with serious post-surgical complications. Therefore, new strategies to help re-establish heart functionality are necessary. Tissue engineering and stem cell therapy are the promising approaches that are being explored for the treatment of MI. The stem cell niche is extremely important for the proliferation and differentiation of stem cells and tissue regeneration. For the introduction of stem cells into the host tissue an artificial carrier such as a scaffold is preferred as direct injection of stem cells has resulted in fast stem cell death. Such scaffold will provide the proper microenvironment that can be altered electronically to provide temporal stimulation to the cells. We have developed an electroactive polymer (EAP) scaffold for cardiac tissue engineering. The EAP scaffold mimics the extracellular matrix and provides a 3D microenvironment that can be easily tuned during fabrication, such as controllable fibre dimensions, alignment, and coating. In addition, the scaffold can provide electrical and electromechanical stimulation to the stem cells which are important external stimuli to stem cell differentiation. We tested the initial biocompatibility of these scaffolds using cardiac progenitor cells (CPCs), and continued onto more sensitive induced pluripotent stem cells (iPS). We present the fabrication and characterisation of these electroactive fibres as well as the response of increasingly sensitive cell types to the scaffolds

    Electroactive polymer scaffolds for cardiac tissue engineering

    No full text
    By-pass surgery and heart transplantation are traditionally used to restore the heart’s functionality after a myocardial Infarction (MI or heart attack) that results in scar tissue formation and impaired cardiac function. However, both procedures are associated with serious post-surgical complications. Therefore, new strategies to help re-establish heart functionality are necessary. Tissue engineering and stem cell therapy are the promising approaches that are being explored for the treatment of MI. The stem cell niche is extremely important for the proliferation and differentiation of stem cells and tissue regeneration. For the introduction of stem cells into the host tissue an artificial carrier such as a scaffold is preferred as direct injection of stem cells has resulted in fast stem cell death. Such scaffold will provide the proper microenvironment that can be altered electronically to provide temporal stimulation to the cells. We have developed an electroactive polymer (EAP) scaffold for cardiac tissue engineering. The EAP scaffold mimics the extracellular matrix and provides a 3D microenvironment that can be easily tuned during fabrication, such as controllable fibre dimensions, alignment, and coating. In addition, the scaffold can provide electrical and electromechanical stimulation to the stem cells which are important external stimuli to stem cell differentiation. We tested the initial biocompatibility of these scaffolds using cardiac progenitor cells (CPCs), and continued onto more sensitive induced pluripotent stem cells (iPS). We present the fabrication and characterisation of these electroactive fibres as well as the response of increasingly sensitive cell types to the scaffolds

    The impact of DIDS-induced inhibition of voltage-dependent anion channels (VDAC) on cellular response of lymphoblastoid cells to ionizing radiation.

    No full text
    Background: The voltage-dependent ion channels (VDAC) play an essential role in the cross talk between mitochondria and the rest of the cell. Their implication in cell life and cell death has been studied extensively in recent years. In this work we studied the impact of mitochondrial membrane voltage-dependent anion channels (VDACs) on cell survival and response to X-ionizing radiation (IR) of human lymphoblastoid K562 cells. Methods: The inhibition of VDACs was achieved by 4,4′-diisothiocyanostilbene-2,2′-disulfonic acid (DIDS) inhibitor and in vitro experiments including clonogenity assay, UV-visible spectrophotometry, comet assay and FACS analysis were implemented. Results: Inhibition of VDAC led to augmentation of IR-induced apoptosis and ROS production. Additionally, DIDS affected repair of IR-induced DNA strand breaks and was in line with both induction of apoptosis and caspase activity. The IR-induced NO production was potently reduced by inhibition of VDAC. Conclusion: Our results suggest that VDAC control cellular response to ionizing radiation through modulation of the ROS- and NO-dependent signaling pathways. Inhibition of VDAC with DIDS induced apoptosis in irradiated K562 lymphoblastoid cells points at DIDS, as a promising agent to enhance the effectiveness of radiotherapy.Funding agencies: National Science Center [DEC-2012/07/B/NZ1/00008, NCN 2015/19/B/ST7/02984]; Innovative Economy Operational Programme (POIG) [02.01.00-00-166/08, POIG. 02.03.01-00040/13]</p

    Nuclear localized Akt enhances breast cancer stem-like cells through counter-regulation of p21(Waf1/Cip1) and p27(kip1)

    No full text
    Cancer stem-like cells (CSCs) are a rare subpopulation of cancer cells capable of propagating the disease and causing cancer recurrence. In this study, we found that the cellular localization of PKB/Akt kinase affects the maintenance of CSCs. When Akt tagged with nuclear localization signal (Akt-NLS) was overexpressed in SKBR3 and MDA-MB468 cells, these cells showed a 10-15% increase in the number of cells with CSCs enhanced ALDH activity and demonstrated a CD44(+High)/CD24(-Low) phenotype. This effect was completely reversed in the presence of Akt-specific inhibitor, triciribine. Furthermore, cells overexpressing Akt or Akt-NLS were less likely to be in G0/G1 phase of the cell cycle by inactivating p21(Waf1/Cip1) and exhibited increased clonogenicity and proliferation as assayed by colony-forming assay (mammosphere formation). Thus, our data emphasize the importance the intracellular localization of Akt has on stemness in human breast cancer cells. It also indicates a new robust way for improving the enrichment and culture of CSCs for experimental purposes. Hence, it allows for the development of simpler protocols to study stemness, clonogenic potency, and screening of new chemotherapeutic agents that preferentially target cancer stem cells. Summary: The presented data, (i) shows new, stemness-promoting role of nuclear Akt/PKB kinase, (ii) it underlines the effects of nuclear Akt on cell cycle regulation, and finally (iii) it suggests new ways to study cancer stem-like cells.Funding Agencies|Linkoping University; Integrative Regenerative Medicine Center (IGEN); VR-NanoVision [K2012-99X-22325-01-5]; Cancerfonden [2013/391]; Canadian Breast Cancer Foundation (CBCF); Natural Sciences and Engineering Research Council of Canada (NSERC); [BK/265/RAU1/2014/t.10]</p
    corecore