295 research outputs found

    The influence of lexical selection disruptions on articulation

    No full text
    Interactive models of language production predict that it should be possible to observe long-distance interactions; effects that arise at one level of processing influence multiple subsequent stages of representation and processing. We examine the hypothesis that disruptions arising in nonform-based levels of planning—specifically, lexical selection—should modulate articulatory processing. A novel automatic phonetic analysis method was used to examine productions in a paradigm yielding both general disruptions to formulation processes and, more specifically, overt errors during lexical selection. This analysis method allowed us to examine articulatory disruptions at multiple levels of analysis, from whole words to individual segments. Baseline performance by young adults was contrasted with young speakers’ performance under time pressure (which previous work has argued increases interaction between planning and articulation) and performance by older adults (who may have difficulties inhibiting nontarget representations, leading to heightened interactive effects). The results revealed the presence of interactive effects. Our new analysis techniques revealed these effects were strongest in initial portions of responses, suggesting that speech is initiated as soon as the first segment has been planned. Interactive effects did not increase under response pressure, suggesting interaction between planning and articulation is relatively fixed. Unexpectedly, lexical selection disruptions appeared to yield some degree of facilitation in articulatory processing (possibly reflecting semantic facilitation of target retrieval) and older adults showed weaker, not stronger interactive effects (possibly reflecting weakened connections between lexical and form-level representations)

    TRPV4: Molecular Conductor of a Diverse Orchestra

    Get PDF
    Transient receptor potential vanilloid type 4 (TRPV4) is a calcium-permeable nonselective cation channel, originally described in 2000 by research teams led by Schultz ( Nat Cell Biol 2: 695 –702, 2000) and Liedtke ( Cell 103: 525–535, 2000). TRPV4 is now recognized as being a polymodal ionotropic receptor that is activated by a disparate array of stimuli, ranging from hypotonicity to heat and acidic pH. Importantly, this ion channel is constitutively expressed and capable of spontaneous activity in the absence of agonist stimulation, which suggests that it serves important physiological functions, as does its widespread dissemination throughout the body and its capacity to interact with other proteins. Not surprisingly, therefore, it has emerged more recently that TRPV4 fulfills a great number of important physiological roles and that various disease states are attributable to the absence, or abnormal functioning, of this ion channel. Here, we review the known characteristics of this ion channel's structure, localization and function, including its activators, and examine its functional importance in health and disease.</jats:p

    Prospectus, November 29, 1989

    Get PDF
    https://spark.parkland.edu/prospectus_1989/1030/thumbnail.jp

    Prospectus, January 31, 1990

    Get PDF
    https://spark.parkland.edu/prospectus_1990/1002/thumbnail.jp

    Prospectus, May 3, 1990

    Get PDF
    https://spark.parkland.edu/prospectus_1990/1013/thumbnail.jp

    Prospectus, November 1, 1989

    Get PDF
    https://spark.parkland.edu/prospectus_1989/1026/thumbnail.jp

    Transplantable human motor networks as a neuron-directed strategy for spinal cord injury

    Get PDF
    To repair neural circuitry following spinal cord injury (SCI), neural stem cell (NSC) transplantation has held a primary focus; however, stochastic outcomes generate challenges driven in part by NSC differentiation and tumor formation. The recent ability to generate regionally specific neurons and their support cells now allows consideration of directed therapeutic approaches with pre-differentiated and networked spinal neural cells. Here, we form encapsulated, transplantable neuronal networks of regionally matched cervical spinal motor neurons, interneurons, and oligodendrocyte progenitor cells derived through trunk-biased neuromesodermal progenitors. We direct neurite formation in alginate-based neural ribbons to generate electrically active, synaptically connected networks, characterized by electrophysiology and calcium imaging before transplantation into rodent models of contused SCI for evaluation at 10-day and 6-week timepoints. The in vivo analyses demonstrate viability and retention of interconnected synaptic networks that readily integrate with the host parenchyma to advance goals of transplantable neural circuitry for SCI treatment

    Zebrafish macroH2A variants have distinct embryo localization and function

    Get PDF
    Mouse and cell-based studies have shown that macroH2A histone variants predominantly associate with heterochromatin. Functional studies found that macroH2As are involved in gene repression, inhibiting the acquisition of pluripotency and preserving cell differentiation. However, only a few studies have analysed the role of macroH2A during early embryo development. We report the development of transgenic zebrafish lines expressing macroH2A isoforms (mH2A1 and mH2A2) fusion proteins (with GFP) under identified endogenous promoters. We found that mH2A1 and mH2A2 have different spatial and temporal expression patterns during embryonic development. mH2A1 is expressed mostly in the extraembryonic Yolk Syncytial Layer (YSL) starting before shield stage and decreasing once morphogenesis is completed. mH2A2 expression lags behind mH2A1, becoming evident at 24 hpf, within the whole body of the embryo proper. Our ChIP-seq analysis showed that mH2A1 and mH2A2 bind to different DNA regions, changing dramatically after gastrulation. We further analysed RNA-seq data and showed that there is not a general/unspecific repressing function of mH2A1 or mH2A2 associated with heterochromatin but a fine regulation depending on cell types and stage of development. mH2A1 downregulates DNA expression in specific cells and embryo stages and its effect is independent of heterochromatin formation but it is correlated with nucleus quiescence instead. Whereas mH2A2 DNA association correlates with upregulation of differentially expressed genes between 75% epiboly and 24 hpf stages. Our data provide information for underlying molecules that participate in crucial early developmental events, and open new venues to explore mH2A related mechanisms that involve cell proliferation, differentiation, migration and metabolism

    Prospectus, October 4, 1989

    Get PDF
    https://spark.parkland.edu/prospectus_1989/1022/thumbnail.jp

    Prospectus, December 5, 1989

    Get PDF
    https://spark.parkland.edu/prospectus_1989/1031/thumbnail.jp
    • …
    corecore