1,387 research outputs found

    Thermally stable low current consuming gallium and germanium chalcogenides for consumer and automotive memory applications

    No full text
    The phase change technology behind rewritable optical disks and the latest generation of electronic memories has provided clear commercial and technological advances for the field of data storage, by virtue of the many well known attributes, in particular scaling, cycling endurance and speed, that chalcogenide materials offer. While the switching power and current consumption of established germanium antimony telluride based memory cells are a major factor in chip design in real world applications, often the thermal stability of the device can be a major obstacle in the path to the full commercialisation. In this work we describe our research in material discovery and characterization for the purpose of identifying more thermally stable chalcogenides for applications in PCRAM

    Early utilization of hypertonic peritoneal dialysate and subsequent risks of non-traumatic amputation among peritoneal dialysis patients: a nationwide retrospective longitudinal study

    Get PDF
    BACKGROUND: The hemodialysis (HD) population has a particularly high incidence of amputation, which is likely associated with decreased tissue oxygenation during HD. However, information about the risk factors leading to amputation in peritoneal dialysis (PD) patients is limited. Here, we have investigated the association between the use of hypertonic peritoneal dialysate (HPD) and subsequent amputation in PD patients. METHODS: Based on the data from the Taiwan National Health Insurance research database, this observational cohort study enrolled 203 PD patients who had received HPD early during treatment and had not undergone amputation and 296 PD controls who had not undergone amputation. Subjects were followed through until the end of 2009 and the event rates of new non-traumatic amputation were compared between groups. RESULTS: The incidence of amputation was 3 times higher for the HPD cohort than for the comparison cohort (23.68 vs. 8.01 per 1000 person-years). The hazard ratio (HR) for this group, estimated using a multivariable Cox model, was 2.48 (95% confidence interval [CI] = 1.06–5.79). The HR for patients with both diabetes and early adoption of HPD increased to 44.34 (95% CI = 5.51-357.03), compared to non-HPD non-diabetic PD controls. CONCLUSION: Early utilization of HPD in PD patients is associated with increasing risk of amputation; this risk considerably increases for those with concomitant diabetes

    Crystallisation study of the Cu<sub>2</sub>ZnSnS<sub>4</sub> chalcogenide material for solar applications

    No full text
    Second generation thin-film chalcogenide materials, in particular CuInGa(S,Se)2 (CIGS) and CdTe, have been among the most promising and quickly became commercial candidates for large-scale PV manufacturing. These materials offer stable and efficient (above 10%) photovoltaic modules fabricated by scalable thin-film technologies and cell efficiencies above 20 % (CIGS). Indium-free kesterite-related materials such as Cu2ZnSnS4 have attracted significant research interest due to their similar properties to CIGS. In these materials, indium is replaced with earth-abundant zinc and tin metals. The quaternary semiconductor Cu2ZnSnS4(CZTS) is a relatively new photovoltaic material and is expected to be interesting for environmentally amenable solar cells, as its constituents are nontoxic and abundant in the Earth's crust. The CZTS thin films show p-type conductivity, a band gap of 1.44–1.51 eV that is ideal to achieve the highest solar-cell conversion efficiency, and relatively high optical absorption in the visible light range

    Graphene-based fiber polarizer with PVB-enhanced light interaction

    No full text
    Graphene is a two-dimensional material which, as a result of its excellent photonic properties, has been investigated for a wide range of optical applications. In this paper, we propose and fabricate a commercial grade broadband graphene-based fiber polarizer using a low loss side-polished optical fiber platform. A high index polyvinyl butyral layer is used to enhance the light-graphene interaction of the evanescent field of the core guided mode to simultaneously obtain a high extinction ratio ~37.5 dB with a low device loss ~1 dB. Characterization of the optical properties reveals that the polarizer retains low transmission losses and high extinction ratios across an extended telecoms band. The results demonstrate that side-polished fibers are a useful platform for leveraging the unique properties of low-dimensional materials in a robust and compact device geometry

    In-fiber all-optical modulation based on an enhanced light-matter interaction with graphene

    No full text
    A graphene-based, high speed, in-fiber optical modulator has been demonstrated on a low-loss side-polished optical fiber platform. These results highlight the potential for robust and efficient integration of low-dimensional materials within standard telecom fibers

    Study of TMDs nanosheets based saturable absorber used for Q-switching and mode lock laser system

    No full text
    Pulse width of pulsed laser determinates their applications. For the long pulse laser with µs or ns pulse width, it can be used for telecommunication, remote sensing and medical surgery. For the ultrashort pulse laser with ps or fs pulse width, it can be used for eye-surgery, precise micro- or even nano-machining on transparent material and novel 3D hologram formation. The saturable absorber (SA) is the crucial optical component that switch the laser operation from CW mode to pulse mode passively. Therefore it attract s great research interests from the laser photonic community. &amp;more..

    Emerging CVD technology for functional chalcogenide materials

    No full text
    Chalcogenide materials, formed from metallic alloys of S, Se, and Te, have received considerable attention for applications in optoelectronic devices over the past two decades in part due to their unique properties such as high infrared transparency, strong photosensitivity, large nonlinearity, capability of high rare-earth doping, and ability to readily change phase. Thin amorphous chalcogenide films are of particular interest because their diverse active properties are easily exploited in integrated planar optical circuits, as well as for memory and other optoelectronic applications. More recently, transition metal dichalcogenides (TMDCs), two-dimensional (2D) layered materials, such as MoS2, MoSe2, WS2, and WSe2 have become a noteworthy complimentary material to field. Sharing many of the properties of graphene they also offer properties that are unattainable in 2D graphene including a tunable bandgap; easily modified through both composition and the number of layers. This has led to use of TMDCs in applications such as transistors, photodetectors, electroluminescent and bio-sensing devices. In this talk we describe our development of functional chalcogenide materials by the chemical vapour deposition technology and discuss their potential applications
    corecore