375 research outputs found

    Early utilization of hypertonic peritoneal dialysate and subsequent risks of non-traumatic amputation among peritoneal dialysis patients: a nationwide retrospective longitudinal study

    Get PDF
    BACKGROUND: The hemodialysis (HD) population has a particularly high incidence of amputation, which is likely associated with decreased tissue oxygenation during HD. However, information about the risk factors leading to amputation in peritoneal dialysis (PD) patients is limited. Here, we have investigated the association between the use of hypertonic peritoneal dialysate (HPD) and subsequent amputation in PD patients. METHODS: Based on the data from the Taiwan National Health Insurance research database, this observational cohort study enrolled 203 PD patients who had received HPD early during treatment and had not undergone amputation and 296 PD controls who had not undergone amputation. Subjects were followed through until the end of 2009 and the event rates of new non-traumatic amputation were compared between groups. RESULTS: The incidence of amputation was 3 times higher for the HPD cohort than for the comparison cohort (23.68 vs. 8.01 per 1000 person-years). The hazard ratio (HR) for this group, estimated using a multivariable Cox model, was 2.48 (95% confidence interval [CI] = 1.06–5.79). The HR for patients with both diabetes and early adoption of HPD increased to 44.34 (95% CI = 5.51-357.03), compared to non-HPD non-diabetic PD controls. CONCLUSION: Early utilization of HPD in PD patients is associated with increasing risk of amputation; this risk considerably increases for those with concomitant diabetes

    Src-family kinase-Cbl axis negatively regulates NLRP3 inflammasome activation.

    Get PDF
    Activation of the NLRP3 inflammasome is crucial for immune defense, but improper and excessive activation causes inflammatory diseases. We previously reported that Pyk2 is essential for NLRP3 inflammasome activation. Here we show that the Src-family kinases (SFKs)-Cbl axis plays a pivotal role in suppressing NLRP3 inflammasome activation in response to stimulation by nigericin or ATP, as assessed using gene knockout and gene knockdown cells, dominant active/negative mutants, and pharmacological inhibition. We reveal that the phosphorylation of Cbl is regulated by SFKs, and that phosphorylation of Cbl at Tyr371 suppresses NLRP3 inflammasome activation. Mechanistically, Cbl decreases the level of phosphorylated Pyk2 (p-Pyk2) through ubiquitination-mediated proteasomal degradation and reduces mitochondrial ROS (mtROS) production by contributing to the maintenance of mitochondrial size. The lower levels of p-Pyk2 and mtROS dampen NLRP3 inflammasome activation. In vivo, inhibition of Cbl with an analgesic drug, hydrocotarnine, increases inflammasome-mediated IL-18 secretion in the colon, and protects mice from dextran sulphate sodium-induced colitis. Together, our novel findings provide new insights into the role of the SFK-Cbl axis in suppressing NLRP3 inflammasome activation and identify a novel clinical utility of hydrocortanine for disease treatment

    Inhibition of gap junctional Intercellular communication in WB-F344 rat liver epithelial cells by triphenyltin chloride through MAPK and PI3-kinase pathways

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Organotin compounds (OTCs) have been widely used as stabilizers in the production of plastic, agricultural pesticides, antifoulant plaints and wood preservation. The toxicity of triphenyltin (TPT) compounds was known for their embryotoxic, neurotoxic, genotoxic and immunotoxic effects in mammals. The carcinogenicity of TPT was not well understood and few studies had discussed the effects of OTCs on gap junctional intercellular communication (GJIC) of cells.</p> <p>Method</p> <p>In the present study, the effects of triphenyltin chloride (TPTC) on GJIC in WB-F344 rat liver epithelial cells were evaluated, using the scrape-loading dye transfer technique.</p> <p>Results</p> <p>TPTC inhibited GJIC after a 30-min exposure in a concentration- and time-dependent manner. Pre-incubation of cells with the protein kinase C (PKC) inhibitor did not modify the response, but the specific MEK 1 inhibitor PD98059 and PI3K inhibitor LY294002 decreased substantially the inhibition of GJIC by TPTC. After WB-F344 cells were exposed to TPTC, phosphorylation of Cx43 increased as seen in Western blot analysis.</p> <p>Conclusions</p> <p>These results show that TPTC inhibits GJIC in WB-F344 rat liver epithelial cells by altering the Cx43 protein expression through both MAPK and PI3-kinase pathways.</p

    Developing 21st century accreditation standards for teaching hospitals: the Taiwan experience

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The purpose of this study is to establish teaching hospital accreditation standards anew with the hope that Taiwan's teaching hospitals can live up to the expectations of our society and ensure quality teaching.</p> <p>Methods</p> <p>The development process lasted two years, 2005-2006, and was separated into three stages. The first stage centered on leadership meetings and consensus building, the second on drafting the new standards with expert focus groups, and the third on a pilot study and subsequent revision.</p> <p>Results</p> <p>Our new teaching hospital accreditation standards have six categories and 95 standards as follows: educational resources (20 items), teaching and training plans and outcomes (42 items), research and results (9 items), development of clinical faculty and continuing education (8 items), academic exchanges and community education (8 items), and administration (8 items).</p> <p>Conclusions</p> <p>The new standards have proven feasible and posed reasonable challenges in the pilot study. We hope the new standards will strengthen teaching and research, and improve the quality of hospital services at the same time.</p

    Pretreatment with a Heat-Killed Probiotic Modulates the NLRP3 Inflammasome and Attenuates Colitis-Associated Colorectal Cancer in Mice.

    Get PDF
    Colorectal cancer (CRC) is one of the most common malignancies worldwide. Inflammation contributes to cancer development and inflammatory bowel disease is an important risk factor for CRC. The aim of this study is to assess whether a widely used probiotic Enterococcus faecalis can modulate the NLRP3 inflammasome and protect against colitis and colitis-associated CRC. We studied the effect of heat-killed cells of E. faecalis on NLRP3 inflammasome activation in THP-1-derived macrophages. Pretreatment of E. faecalis or NLRP3 siRNA can inhibit NLRP3 inflammasome activation in macrophages in response to fecal content or commensal microbes, P. mirabilis or E. coli, according to the reduction of caspase-1 activation and IL-1β maturation. Mechanistically, E. faecalis attenuates the phagocytosis that is required for the full activation of the NLRP3 inflammasome. In in vivo mouse experiments, E. faecalis can ameliorate the severity of intestinal inflammation and thereby protect mice from dextran sodium sulfate (DSS)-induced colitis and the formation of CRC in wild type mice. On the other hand, E. faecalis cannot prevent DSS-induced colitis in NLRP3 knockout mice. Our findings indicate that application of the inactivated probiotic, E. faecalis, may be a useful and safe strategy for attenuation of NLRP3-mediated colitis and inflammation-associated colon carcinogenesis

    Cbl negatively regulates nlrp3 inflammasome activation through glut1-dependent glycolysis inhibition

    Get PDF
    Activation of the nod-like receptor 3 (NLRP3) inflammasomes is crucial for immune defense, but improper and excessive activation causes inflammatory diseases. We previously reported that Cbl plays a pivotal role in suppressing NLRP3 inflammasome activation by inhibiting Pyk2-mediated apoptosis-associated speck-like protein containing a CARD (ASC) oligomerization. Here, we showed that Cbl dampened NLRP3 inflammasome activation by inhibiting glycolysis, as demonstrated with Cbl knockout cells and treatment with the Cbl inhibitor hydrocotarnine. We revealed that the inhibition of Cbl promoted caspase-1 cleavage and interleukin (IL)-1β secretion through a glycolysis-dependent mechanism. Inhibiting Cbl increased cellular glucose uptake, glycolytic capacity, and mitochondrial oxidative phosphorylation capacity. Upon NLRP3 inflammasome activation, inhibiting Cbl increased glycolysis-dependent activation of mitochondrial respiration and increased the production of reactive oxygen species, which contributes to NLRP3 inflammasome activation and IL-1β secretion. Mechanistically, inhibiting Cbl increased surface expression of glucose transporter 1 (GLUT1) protein through post-transcriptional regulation, which increased cellular glucose uptake and consequently raised glycolytic capacity, and in turn enhanced NLRP3 inflammasome activation. Together, our findings provide new insights into the role of Cbl in NLRP3 inflammasome regulation through GLUT1 downregulation. We also show that a novel Cbl inhibitor, hydrocortanine, increased NLRP3 inflammasome activity via its effect on glycolysis

    Mitochondrial oxidative phosphorylation complex regulates NLRP3 inflammasome activation and predicts patient survival in nasopharyngeal carcinoma

    Get PDF
    © 2020 Chung et al. We previously reported that tumor inflammasomes play a key role in tumor control and act as favorable prognostic markers in nasopharyngeal carcinoma (NPC). Activated inflammasomes frequently form distinguishable specks and govern the cellular secretion of IL-1β. However, we know little about the biological and biochemical differences between cells with and without apoptosis-associated speck-like protein containing a caspase-recruitment domain (ASC) speck formation. In this study, we used proteomic iTRAQ analysis to analyze the proteomes of NPC cells that differ in their ASC speck formation upon cisplatin treatment. We identified proteins that were differentially over-expressed in cells with specks, and found that they fell into two Gene ontology (GO) pathways: mitochondrial oxidative phosphorylation (OxPhos) and ubiquinone metabolism. We observed up-regulation of various components of the OxPhos machinery (including NDUFB3, NDUFB8 and ATP5B), and subsequently found that these changes lead to mitochondrial ROS (mtROS) production, which promotes the formation and activation of NLRP3 inflammasomes and subsequent pyroptosis. In NPC patients, better local recurrence-free survival was significantly associated with high-level expression of NDUFB8 (p = 0.037) and ATP5B (p = 0.029), as examined using immunohistochemistry. However, there were no significant associations between the expression of NDUFB8 and ATP5B with overall survival of NPC patients. Together, our results demonstrate that up-regulated mitochondrial OxPhos components are strongly associated with NLRP3 inflammasome activation in NPC. Our findings further suggest that high-level expression of OxPhos components could be markers for local recurrence and/or promising therapeutic targets in patients with NPC
    corecore