1,851 research outputs found
Numerical Complete Solution for Random Genetic Drift by Energetic Variational Approach
In this paper, we focus on numerical solutions for random genetic drift
problem, which is governed by a degenerated convection-dominated parabolic
equation. Due to the fixation phenomenon of genes, Dirac delta singularities
will develop at boundary points as time evolves. Based on an energetic
variational approach (EnVarA), a balance between the maximal dissipation
principle (MDP) and least action principle (LAP), we obtain the trajectory
equation. In turn, a numerical scheme is proposed using a convex splitting
technique, with the unique solvability (on a convex set) and the energy decay
property (in time) justified at a theoretical level. Numerical examples are
presented for cases of pure drift and drift with semi-selection. The remarkable
advantage of this method is its ability to catch the Dirac delta singularity
close to machine precision over any equidistant grid.Comment: 22 pages, 11 figures, 2 table
Systematic analysis of the incoming quark energy loss in cold nuclear matter
The investigation into the fast parton energy loss in cold nuclear matter is
crucial for a good understanding of the parton propagation in hot-dense medium.
By means of four typical sets of nuclear parton distributions and three
parametrizations of quark energy loss, the parameter values in quark energy
loss expressions are determined from a leading order statistical analysis of
the existing experimental data on nuclear Drell-Yan differential cross section
ratio as a function of the quark momentum fraction. It is found that with
independence on the nuclear modification of parton distributions, the available
experimental data from lower incident beam energy rule out the incident-parton
momentum fraction quark energy loss. Whether the quark energy loss is linear or
quadratic with the path length is not discriminated. The global fit of all
selected data gives the quark energy loss per unit path length {\alpha} =
1.21\pm0.09 GeV/fm by using nuclear parton distribution functions determined
only by means of the world data on nuclear structure function. Our result does
not support the theoretical prediction: the energy loss of an outgoing quark is
three times larger than that of an incoming quark approaching the nuclear
medium. It is desirable that the present work can provide useful reference for
the Fermilab E906/SeaQuest experiment
Quark energy loss and shadowing in nuclear Drell-Yan process
The energy loss effect in nuclear matter is another nuclear effect apart from
the nuclear effects on the parton distribution as in deep inelastic scattering
process. The quark energy loss can be measured best by the nuclear dependence
of the high energy nuclear Drell-Yan process. By means of three kinds of quark
energy loss parameterizations given in literature and the nuclear parton
distribution extracted only with lepton-nucleus deep inelastic scattering
experimental data, measured Drell-Yan production cross sections are analyzed
for 800GeV proton incident on a variety of nuclear targets from FNAL E866. It
is shown that our results with considering the energy loss effect are much
different from these of the FNAL E866 who analysis the experimental data with
the nuclear parton distribution functions obtained by using the deep inelastic
lA collisions and pA nuclear Drell-Yan data . Considering the existence of
energy loss effect in Drell-Yan lepton pairs production,we suggest that the
extraction of nuclear parton distribution functions should not include
Drell-Yan experimental data.Comment: 12 page
Nuclear geometry effect and transport coefficient in semi-inclusive lepton-production of hadrons off nuclei
Hadron production in semi-inclusive deep-inelastic scattering of leptons from
nuclei is an ideal tool to determine and constrain the transport coefficient in
cold nuclear matter. The leading-order computations for hadron multiplicity
ratios are performed by means of the SW quenching weights and the analytic
parameterizations of quenching weights based on BDMPS formalism. The
theoretical results are compared to the HERMES positively charged pions
production data with the quarks hadronization occurring outside the nucleus.
With considering the nuclear geometry effect on hadron production, our
predictions are in good agreement with the experimental measurements. The
extracted transport parameter from the global fit is shown to be for the SW quenching weight without the finite energy
corrections. As for the analytic parameterization of BDMPS quenching weight
without the quark energy E dependence, the computed transport coefficient is
. It is found that the nuclear geometry effect
has a significant impact on the transport coefficient in cold nuclear matter.
It is necessary to consider the detailed nuclear geometry in studying the
semi-inclusive hadron production in deep inelastic scattering on nuclear
targets.Comment: 14 pages, 3 figures. arXiv admin note: text overlap with
arXiv:1310.569
Density-functional calculations of the electronic structure and lattice dynamics of superconducting LaOFBiS: Evidence for an electron-phonon interaction near the charge-density-wave instability
We discuss the electronic structure, lattice dynamics and electron-phonon
interaction of newly discovered superconductor LaOFBiS
using density functional based calculations. A strong Fermi surface nesting at
=(,,0) suggests a proximity to charge density wave
instability and leads to imaginary harmonic phonons at this point
associated with in-plane displacements of S atoms. Total energy analysis
resolves only a shallow double-well potential well preventing the appearance of
static long-range order. Both harmonic and anharmonic contributions to
electron-phonon coupling are evaluated and give a total coupling constant
prompting this material to be a conventional
superconductor contrary to structurally similar FeAs materials.Comment: Supplementary Materials is adde
- …