7 research outputs found

    Efficacy and Safety Comparison Between Suberoylanilide Hydroxamic Acid and Mitomycin C in Reducing the Risk of Corneal Haze After PRK Treatment In Vivo

    Get PDF
    PURPOSE: This study compared the efficacy and safety of suberoylanilide hydroxamic acid (SAHA) and mitomycin C (MMC) up to 4 months in the prevention of corneal haze induced by photorefractive keratectomy (PRK) in rabbits in vivo. METHODS: Corneal haze in rabbits was produced with −9.00 diopter PRK. A single application of SAHA (25 μM) or MMC (0.02%) was applied topically immediately after PRK. Effects of the two drugs were analyzed by slit-lamp microscope, specular microscope, TUNEL assay, and immunofluorescence. RESULTS: Single topical adjunct use of SAHA (25 μM) or MMC (0.02%) after PRK attenuated more than 95% corneal haze and myofibroblast formation (P \u3c .001). SAHA did not reduce keratocyte density, cause keratocyte apoptosis, or increase immune cell infiltration compared to MMC (P \u3c .01 or .001). Furthermore, SAHA dosing did not compromise corneal endothelial phenotype, density, or function in rabbit eyes, whereas MMC application did (P \u3c .01 or .001). CONCLUSIONS: SAHA and MMC significantly decreased corneal haze after PRK in rabbits in vivo. SAHA exhibited significantly reduced short- and long-term damage to the corneal endothelium compared to MMC in rabbits. SAHA is an effective and potentially safer alternative to MMC for the prevention of corneal haze after PRK. Clinical trials are warranted

    SAHA : FDA approved histone deacetylase inhibitor demonstrates exceptionally high inhibition of corneal haze following PRK surgery in rabbit model [abstract]

    Get PDF
    TGF[beta] induces the transformation of corneal keratocytes into fibroblasts and myofibroblasts resulting in the formation of corneal haze (scar) following injury. We investigated whether epigenetic modifications can prevent development of corneal haze in vivo using a rabbit model

    QLIF Workshop 2: Safety of foods from organic and low input farming systems

    Get PDF
    In this workshop, we will summarize the results of the QLIF project on food safety issues. The participants discuss safety problems related to organic and low input standards and techniques for both animal and plant products. They will relate the findings to consumers’ perception and concern. Improved production and processing techniques will be suggested

    Synthesis of iron fertilization experiments: From the Iron Age in the Age of Enlightenment

    Get PDF
    Comparison of eight iron experiments shows that maximum Chl a, the maximum DIC removal, and the overall DIC/ Fe efficiency all scale inversely with depth of the wind mixed layer (WML) defining the light environment. Moreover, lateral patch dilution, sea surface irradiance, temperature, and grazing play additional roles. The Southern Ocean experiments were most influenced by very deep WMLs. In contrast, light conditions were most favorable during SEEDS and SERIES as well as during IronEx-2. The two extreme experiments, EisenEx and SEEDS, can be linked via EisenEx bottle incubations with shallower simulated WML depth. Large diatoms always benefit the most from Fe addition, where a remarkably small group of thriving diatom species is dominated by universal response of Pseudo-nitzschia spp. Significant response of these moderate ( 10 - 30 mu m), medium ( 30 - 60 mu m), and large (> 60 mu m) diatoms is consistent with growth physiology determined for single species in natural seawater. The minimum level of "dissolved'' Fe ( filtrate < 0.2 mu m) maintained during an experiment determines the dominant diatom size class. However, this is further complicated by continuous transfer of original truly dissolved reduced Fe(II) into the colloidal pool, which may constitute some 75% of the "dissolved'' pool. Depth integration of carbon inventory changes partly compensates the adverse effects of a deep WML due to its greater integration depths, decreasing the differences in responses between the eight experiments. About half of depth-integrated overall primary productivity is reflected in a decrease of DIC. The overall C/Fe efficiency of DIC uptake is DIC/Fe similar to 5600 for all eight experiments. The increase of particulate organic carbon is about a quarter of the primary production, suggesting food web losses for the other three quarters. Replenishment of DIC by air/sea exchange tends to be a minor few percent of primary CO2 fixation but will continue well after observations have stopped. Export of carbon into deeper waters is difficult to assess and is until now firmly proven and quite modest in only two experiments

    Human herpesvirus 8, Kaposi's sarcoma, and associated conditions

    No full text

    Progression of Geographic Atrophy in Age-related Macular Degeneration

    No full text
    corecore