544 research outputs found

    Online Job Scheduling in Distributed Machine Learning Clusters

    Full text link
    Nowadays large-scale distributed machine learning systems have been deployed to support various analytics and intelligence services in IT firms. To train a large dataset and derive the prediction/inference model, e.g., a deep neural network, multiple workers are run in parallel to train partitions of the input dataset, and update shared model parameters. In a shared cluster handling multiple training jobs, a fundamental issue is how to efficiently schedule jobs and set the number of concurrent workers to run for each job, such that server resources are maximally utilized and model training can be completed in time. Targeting a distributed machine learning system using the parameter server framework, we design an online algorithm for scheduling the arriving jobs and deciding the adjusted numbers of concurrent workers and parameter servers for each job over its course, to maximize overall utility of all jobs, contingent on their completion times. Our online algorithm design utilizes a primal-dual framework coupled with efficient dual subroutines, achieving good long-term performance guarantees with polynomial time complexity. Practical effectiveness of the online algorithm is evaluated using trace-driven simulation and testbed experiments, which demonstrate its outperformance as compared to commonly adopted scheduling algorithms in today's cloud systems

    More on volume dependence of spectral weight function

    Full text link
    Spectral weight functions are easily obtained from two-point correlation functions and they might be used to distinguish single-particle from multi-particle states in a finite-volume lattice calculation, a problem crucial for many lattice QCD simulations. In previous studies, it is shown that the spectral weight function for a broad resonance shares the typical volume dependence of a two-particle scattering state i.e. proportional to 1/L31/L^3 in a large cubic box of size LL while the narrow resonance case requires further investigation. In this paper, a generalized formula is found for the spectral weight function which incorporates both narrow and broad resonance cases. Within L\"uscher's formalism, it is shown that the volume dependence of the spectral weight function exhibits a single-particle behavior for a extremely narrow resonance and a two-particle behavior for a broad resonance. The corresponding formulas for both A1+A^+_1 and T1T^-_1 channels are derived. The potential application of these formulas in the extraction of resonance parameters are also discussed

    Radiative transitions in charmonium from Nf=2N_f=2 twisted mass lattice QCD

    Full text link
    We present a study for charmonium radiative transitions: J/ψηcγJ/\psi\rightarrow\eta_c\gamma, χc0J/Ψγ\chi_{c0}\rightarrow J/\Psi\gamma and hcηcγh_c\rightarrow\eta_c\gamma using Nf=2N_f=2 twisted mass lattice QCD gauge configurations. The single-quark vector form factors for ηc\eta_c and χc0\chi_{c0} are also determined. The simulation is performed at a lattice spacing of a=0.06666a= 0.06666 fm and the lattice size is 323×6432^3\times 64. After extrapolation of lattice data at nonzero Q2Q^2 to 0, we compare our results with previous quenched lattice results and the available experimental values.Comment: typeset with revtex, 15 pages, 11 figures, 4 table

    An Optimized Real-Time PCR to Avoid Species-/Tissue-Associated Inhibition for H5N1 Detection in Ferret and Monkey Tissues

    Get PDF
    The real-time PCR diagnostics for avian influenza virus H5N1 in tissue specimens are often suboptimal, since naturally occurring PCR inhibitors present in samples, or unanticipated match of primer to unsequenced species' genome. With the principal aim of optimizing the SYBR Green real-time PCR method for detecting H5N1 in ferret and monkey (Chinese rhesus macaque) tissue specimens, we screened various H5N1 gene-specific primer pairs and tested their ability to sensitively and specifically detect H5N1 transcripts in the infected animal tissues, then we assessed RNA yield and quality by comparing Ct values obtained from the standard Trizol method, and four commonly used RNA isolation kits with small modifications, including Roche High Pure, Ambion RNAqueous, BioMIGA EZgene, and Qiagen RNeasy. The results indicated that a single primer pair exhibited high specificity and sensitivity for H5N1 transcripts in ferret and monkey tissues. Each of the four kits and Trizol reagent produced high-quality RNA and removed all or nearly all PCR inhibitors. No statistically significant differences were found between the Ct values from the isolation methods. So the optimized SYBR Green real-time PCR could avoid species- or tissue-associated PCR inhibition in detecting H5N1 in ferret and monkey tissues, including lung and small intestine

    Optimal three-state field-free molecular orientation with terahertz pulses

    Full text link
    We present a combined analytical and numerical investigation to show how an optimal control field can be designed to generate maximum field-free orientation of molecules for three populated rotational states. Based on a model involving pure rotational ladder-climbing excitation between rotational states, a set of optimal amplitude and phase conditions are analytically derived for the applied control fields. The maximum degree of orientation can be achieved when the field satisfies amplitude and phase conditions at the two transition frequencies. Multiple optimal solutions exist and to examine these conditions, we devise a quantum coherent control scheme using two terahertz pulses and successfully apply it to the linear polar molecule HCN at ultracold temperature. The sensitivity of both populations and phases of rotational states to control field parameters, i.e., the detuning, bandwidth, and time delay, is analyzed for understanding the optimal orientation mechanism. This work thus examines the frequency domain landscape belonging to optimal pulses.Comment: 21 pages and 10 figure

    Ultrafast switchable spin-orbit coupling for silicon spin qubits via spin valves

    Full text link
    Recent experimental breakthroughs, particularly for single-qubit and two-qubit gates exceeding the error correction threshold, highlight silicon spin qubits as leading candidates for fault-tolerant quantum computation. In the existing architecture, intrinsic or synthetic spin-orbit coupling (SOC) is critical in various aspects, including electrical control, addressability, scalability, etc. However, the high-fidelity SWAP operation and quantum state transfer (QST) between spin qubits, crucial for qubit-qubit connectivity, require the switchable nature of SOC which is rarely considered. Here, we propose a flexible architecture based on spin valves by electrically changing its magnetization orientation within sub-nanoseconds to generate ultrafast switchable SOC. Based on the switchable SOC architecture, both SWAP operation of neighbor spin qubits and resonant QST between distant spins can be realized with fidelity exceeding 99% while considering the realistic experimental parameters. Benefiting from the compatible processes with the modern semiconductor industry and experimental advances in spin valves and spin qubits, our results pave the way for future construction of silicon-based quantum chips.Comment: 22 pages, 5 figure

    Transmission of H7N9 influenza virus in mice by different infective routes.

    Get PDF
    BackgroundOn 19 February 2013, the first patient infected with a novel influenza A H7N9 virus from an avian source showed symptoms of sickness. More than 349 laboratory-confirmed cases and 109 deaths have been reported in mainland China since then. Laboratory-confirmed, human-to-human H7N9 virus transmission has not been documented between individuals having close contact; however, this transmission route could not be excluded for three families. To control the spread of the avian influenza H7N9 virus, we must better understand its pathogenesis, transmissibility, and transmission routes in mammals. Studies have shown that this particular virus is transmitted by aerosols among ferrets.MethodsTo study potential transmission routes in animals with direct or close contact to other animals, we investigated these factors in a murine model.ResultsViable H7N9 avian influenza virus was detected in the upper and lower respiratory tracts, intestine, and brain of model mice. The virus was transmissible between mice in close contact, with a higher concentration of virus found in pharyngeal and ocular secretions, and feces. All these biological materials were contagious for naïve mice.ConclusionsOur results suggest that the possible transmission routes for the H7N9 influenza virus were through mucosal secretions and feces

    Increasing Resistance to Azithromycin in Neisseria gonorrhoeae in Eastern Chinese Cities: Resistance Mechanisms and Genetic Diversity among Isolates from Nanjing

    Get PDF
    Azithromycin resistance (AZM-R) of Neisseria gonorrhoeae is emerging as a clinical and public health challenge. We determined molecular characteristics of recent AZM-R Nanjing gonococcal isolates and tracked the emergence of AZM-R isolates in eastern Chinese cities in recent years. A total of 384 N. gonorrhoeae isolates from Nanjing collected from 2013 to 2014 were tested for susceptibility to AZM and six additional antibiotics; all AZM-R strains were characterized genetically for resistance determinants by sequencing and were genotyped using N. gonorrhoeae multiantigen sequence typing (NG-MAST). Among the 384 isolates, 124 (32.3%) were AZM-R. High-level resistance (MIC, \u3e /=256 mg/liter) was present in 10.4% (40/384) of isolates, all of which possessed the A2143G mutation in all four 23S rRNA alleles. Low- to mid-level resistance (MIC, 1 to 64 mg/liter) was present in 21.9% (84/384) of isolates, 59.5% of which possessed the C2599T mutation in all four 23S rRNA alleles. The 124 AZM-R isolates were distributed in 71 different NG-MAST sequence types (STs). ST1866 was the most prevalent type in high-level AZM-R (HL-AZM-R) isolates (45% [18/40]). This study, together with previous reports, revealed that the prevalence of AZM-R in N. gonorrhoeae isolates in certain eastern Chinese cities has risen \u3e 4-fold (7% to 32%) from 2008 to 2014. The principal mechanisms of AZM resistance in recent Nanjing isolates were A2143G mutations (high-level resistance) and C2599T mutations (low- to mid-level resistance) in the 23S rRNA alleles. Characterization of NG-MAST STs and phylogenetic analysis indicated the genetic diversity of N. gonorrhoeae in Nanjing; however, ST1866 was the dominant genotype associated with HL-AZM-R isolates
    corecore