283 research outputs found

    1000 Genomes-based meta-analysis identifies 10 novel loci for kidney function

    Get PDF
    HapMap imputed genome-wide association studies (GWAS) have revealed > 50 loci at which common variants with minor allele frequency > 5% are associated with kidney function. GWAS using more complete reference sets for imputation, such as those from The 1000 Genomes project, promise to identify novel loci that have been missed by previous efforts. To investigate the value of such a more complete variant catalog, we conducted a GWAS meta-analysis of kidney function based on the estimated glomerular filtration rate (eGFR) in 110,517 European ancestry participants using 1000 Genomes imputed data. We identified 10 novel loci with p-value < 5 x 10(-8) previously missed by HapMap-based GWAS. Six of these loci (HOXD8, ARL15, PIK3R1, EYA4, ASTN2, and EPB41L3) are tagged by common SNPs unique to the 1000 Genomes reference panel. Using pathway analysis, we identified 39 significant (FDR < 0.05) genes and 127 significantly (FDR < 0.05) enriched gene sets, which were missed by our previous analyses. Among those, the 10 identified novel genes are part of pathways of kidney development, carbohydrate metabolism, cardiac septum development and glucose metabolism. These results highlight the utility of re-imputing from denser reference panels, until wholegenome sequencing becomes feasible in large samples

    Multiethnic genome-wide meta-analysis of ectopic fat depots identifies loci associated with adipocyte development and differentiation

    Get PDF
    Variation in body fat distribution contributes to the metabolic sequelae of obesity. The genetic determinants of body fat distribution are poorly understood. The goal of this study was to gain new insights into the underlying genetics of body fat distribution by conducting sample-size weighted fixed-effects genome-wide association meta-analyses in up to 9,594 women and 8,738 men for six ectopic fat traits in European, African, Hispanic, and Chinese ancestry populations, with and without sex stratification. In total, 7 new loci were identified in association with ectopic fat traits (ATXN1, UBE2E2, EBF1, RREB1, GSDMB, GRAMD3 and ENSA; PATXN1 and UBE2E2 in primary mouse adipose progenitor cells impaired adipocyte differentiation, suggesting a physiological role for ATXN1 and UBE2E2 in adipogenesis. Future studies are necessary to further explore the mechanisms by which these genes impact adipocyte biology and how their perturbations contribute to systemic metabolic disease

    a mixed-method approach

    Get PDF
    Background Sedentary behaviours (SB) can be characterized by low energy expenditure in a reclining position (e.g., sitting) often associated with work and transport. Prolonged SB is associated with increased risk for chronic conditions, and due to technological advances, the working population is in office settings with high occupational exposure to SB. This study aims to assess SB among office workers, as well as barriers and strategies towards reducing SB in the work setting. Methods Using a mixed-methods approach guided by the socio-ecological framework, non-academic office workers from a professional school in a large public university were recruited. Of 180 eligible office workers, 40 enrolled and completed all assessments. Self- reported and objectively measured SB and activity levels were captured. Focus group discussion (FGD) were conducted to further understand perceptions, barriers, and strategies to reducing workplace SB. Environmental factors were systematically evaluated by trained research staff using an adapted version of the Checklist for Health Promotion Environments at Worksites (CHEW). Thematic analysis of FGD was conducted and descriptive analysis of quantitative data was performed. Results The sample was mostly Chinese (n = 33, 80 %) with a total of 24 (60 %) female participants. Most participants worked five days a week for about 9.5(0.5) hrs/day. Accelerometer data show that participants spend the majority of their days in sedentary activities both on workdays (76.9 %) and non-workdays (69.5 %). Self-report data confirm these findings with median sitting time of 420(180) minutes at work. From qualitative analyses, major barriers to reducing SB emerged, including the following themes: workplace social and cultural norms, personal factors, job scope, and physical building/office infrastructure. CHEW results confirm a lack of support from the physical infrastructure and information environment to reducing SB. Conclusions There is high SB among office workers in this sample. We identified multiple levels of influence for prolonged occupational SB, with a particular emphasis on workplace norms and infrastructure as important barriers to reducing SB and increasing PA. A larger, representative sample of the Singaporean population is needed to confirm our findings but it seems that any intervention aimed at reducing SB in the workplace should target individual, environmental, and organizational levels

    A principal component meta-analysis on multiple anthropometric traits identifies novel loci for body shape

    Get PDF
    Large consortia have revealed hundreds of genetic loci associated with anthropometric traits, one trait at a time. We examined whether genetic variants affect body shape as a composite phenotype that is represented by a combination of anthropometric traits. We developed an approach that calculates averaged PCs (AvPCs) representing body shape derived from six anthropometric traits (body mass index, height, weight, waist and hip circumference, waist-to-hip ratio). The first four AvPCs explain \u3e99% of the variability, are heritable, and associate with cardiometabolic outcomes. We performed genome-wide association analyses for each body shape composite phenotype across 65 studies and meta-analysed summary statistics. We identify six novel loci: LEMD2 and CD47 for AvPC1, RPS6KA5/C14orf159 and GANAB for AvPC3, and ARL15 and ANP32 for AvPC4. Our findings highlight the value of using multiple traits to define complex phenotypes for discovery, which are not captured by single-trait analyses, and may shed light onto new pathways

    Epigenome-Wide Association Study of Incident Type 2 Diabetes in a British Population: EPIC-Norfolk Study.

    Get PDF
    Epigenetic changes may contribute substantially to risks of diseases of aging. Previous studies reported seven methylation variable positions (MVPs) robustly associated with incident type 2 diabetes mellitus (T2DM). However, their causal roles in T2DM are unclear. In an incident T2DM case-cohort study nested within the population-based European Prospective Investigation into Cancer and Nutrition (EPIC)-Norfolk cohort, we used whole blood DNA collected at baseline, up to 11 years before T2DM onset, to investigate the role of methylation in the etiology of T2DM. We identified 15 novel MVPs with robust associations with incident T2DM and robustly confirmed three MVPs identified previously (near to TXNIP, ABCG1, and SREBF1). All 18 MVPs showed directionally consistent associations with incident and prevalent T2DM in independent studies. Further conditional analyses suggested that the identified epigenetic signals appear related to T2DM via glucose and obesity-related pathways acting before the collection of baseline samples. We integrated genome-wide genetic data to identify methylation-associated quantitative trait loci robustly associated with 16 of the 18 MVPs and found one MVP, cg00574958 at CPT1A, with a possible direct causal role in T2DM. None of the implicated genes were previously highlighted by genetic association studies, suggesting that DNA methylation studies may reveal novel biological mechanisms involved in tissue responses to glycemia
    corecore