1,532 research outputs found
Discretized Multinomial Distributions and Nash Equilibria in Anonymous Games
We show that there is a polynomial-time approximation scheme for computing
Nash equilibria in anonymous games with any fixed number of strategies (a very
broad and important class of games), extending the two-strategy result of
Daskalakis and Papadimitriou 2007. The approximation guarantee follows from a
probabilistic result of more general interest: The distribution of the sum of n
independent unit vectors with values ranging over {e1, e2, ...,ek}, where ei is
the unit vector along dimension i of the k-dimensional Euclidean space, can be
approximated by the distribution of the sum of another set of independent unit
vectors whose probabilities of obtaining each value are multiples of 1/z for
some integer z, and so that the variational distance of the two distributions
is at most eps, where eps is bounded by an inverse polynomial in z and a
function of k, but with no dependence on n. Our probabilistic result specifies
the construction of a surprisingly sparse eps-cover -- under the total
variation distance -- of the set of distributions of sums of independent unit
vectors, which is of interest on its own right.Comment: In the 49th Annual IEEE Symposium on Foundations of Computer Science,
FOCS 200
Optimum Statistical Estimation with Strategic Data Sources
We propose an optimum mechanism for providing monetary incentives to the data
sources of a statistical estimator such as linear regression, so that high
quality data is provided at low cost, in the sense that the sum of payments and
estimation error is minimized. The mechanism applies to a broad range of
estimators, including linear and polynomial regression, kernel regression, and,
under some additional assumptions, ridge regression. It also generalizes to
several objectives, including minimizing estimation error subject to budget
constraints. Besides our concrete results for regression problems, we
contribute a mechanism design framework through which to design and analyze
statistical estimators whose examples are supplied by workers with cost for
labeling said examples
The Complexity of the Homotopy Method, Equilibrium Selection, and Lemke-Howson Solutions
We show that the widely used homotopy method for solving fixpoint problems,
as well as the Harsanyi-Selten equilibrium selection process for games, are
PSPACE-complete to implement. Extending our result for the Harsanyi-Selten
process, we show that several other homotopy-based algorithms for finding
equilibria of games are also PSPACE-complete to implement. A further
application of our techniques yields the result that it is PSPACE-complete to
compute any of the equilibria that could be found via the classical
Lemke-Howson algorithm, a complexity-theoretic strengthening of the result in
[Savani and von Stengel]. These results show that our techniques can be widely
applied and suggest that the PSPACE-completeness of implementing homotopy
methods is a general principle.Comment: 23 pages, 1 figure; to appear in FOCS 2011 conferenc
The Architecture of a Biologically Plausible Language Organ
We present a simulated biologically plausible language organ, made up of
stylized but realistic neurons, synapses, brain areas, plasticity, and a
simplified model of sensory perception. We show through experiments that this
model succeeds in an important early step in language acquisition: the learning
of nouns, verbs, and their meanings, from the grounded input of only a modest
number of sentences. Learning in this system is achieved through Hebbian
plasticity, and without backpropagation. Our model goes beyond a parser
previously designed in a similar environment, with the critical addition of a
biologically plausible account for how language can be acquired in the infant's
brain, not just processed by a mature brain.Comment: 9 pages, 4 figure
The Connectivity of Boolean Satisfiability: Computational and Structural Dichotomies
Boolean satisfiability problems are an important benchmark for questions
about complexity, algorithms, heuristics and threshold phenomena. Recent work
on heuristics, and the satisfiability threshold has centered around the
structure and connectivity of the solution space. Motivated by this work, we
study structural and connectivity-related properties of the space of solutions
of Boolean satisfiability problems and establish various dichotomies in
Schaefer's framework.
On the structural side, we obtain dichotomies for the kinds of subgraphs of
the hypercube that can be induced by the solutions of Boolean formulas, as well
as for the diameter of the connected components of the solution space. On the
computational side, we establish dichotomy theorems for the complexity of the
connectivity and st-connectivity questions for the graph of solutions of
Boolean formulas. Our results assert that the intractable side of the
computational dichotomies is PSPACE-complete, while the tractable side - which
includes but is not limited to all problems with polynomial time algorithms for
satisfiability - is in P for the st-connectivity question, and in coNP for the
connectivity question. The diameter of components can be exponential for the
PSPACE-complete cases, whereas in all other cases it is linear; thus, small
diameter and tractability of the connectivity problems are remarkably aligned.
The crux of our results is an expressibility theorem showing that in the
tractable cases, the subgraphs induced by the solution space possess certain
good structural properties, whereas in the intractable cases, the subgraphs can
be arbitrary
Random Projection in the Brain and Computation with Assemblies of Neurons
It has been recently shown via simulations [Dasgupta et al., 2017] that random projection followed by a cap operation (setting to one the k largest elements of a vector and everything else to zero), a map believed to be an important part of the insect olfactory system, has strong locality sensitivity properties. We calculate the asymptotic law whereby the overlap in the input vectors is conserved, verifying mathematically this empirical finding. We then focus on the far more complex homologous operation in the mammalian brain, the creation through successive projections and caps of an assembly (roughly, a set of excitatory neurons representing a memory or concept) in the presence of recurrent synapses and plasticity. After providing a careful definition of assemblies, we prove that the operation of assembly projection converges with high probability, over the randomness of synaptic connectivity, even if plasticity is relatively small (previous proofs relied on high plasticity). We also show that assembly projection has itself some locality preservation properties. Finally, we propose a large repertoire of assembly operations, including associate, merge, reciprocal project, and append, each of them both biologically plausible and consistent with what we know from experiments, and show that this computational system is capable of simulating, again with high probability, arbitrary computation in a quite natural way. We hope that this novel way of looking at brain computation, open-ended and based on reasonably mainstream ideas in neuroscience, may prove an attractive entry point for computer scientists to work on understanding the brain
Reflective Relational Machines
AbstractWe propose a model of database programming withreflection(dynamic generation of queries within the host programming language), called thereflective relational machine, and characterize the power of this machine in terms of known complexity classes. In particular, the polynomial time restriction of the reflective relational machine is shown to express PSPACE, and to correspond precisely to uniform circuits of polynomial depth and exponential size. This provides an alternative, logic based formulation of the uniform circuit model, which may be more convenient for problems naturally formulated in logic terms, and establishes that reflection allows for more “intense” parallelism, which is not attainable otherwise (unless P=PSPACE). We also explore the power of the reflective relational machine subject to restrictions on the number of variables used, emphasizing the case of sublinear bounds
- …