39 research outputs found

    Unprecedented reorganization of holocentric chromosomes provides insights into the enigma of lepidopteran chromosome evolution

    Get PDF
    Chromosome evolution presents an enigma in the mega-diverse Lepidoptera. Most species exhibit constrained chromosome evolution with nearly identical haploid chromosome counts and chromosome-level gene collinearity among species more than 140 million years divergent. However, a few species possess radically inflated chromosomal counts due to extensive fission and fusion events. To address this enigma of constraint in the face of an exceptional ability to change, we investigated an unprecedented reorganization of the standard lepidopteran chromosome structure in the green-veined white butterfly (Pieris napi). We find that gene content in P. napi has been extensively rearranged in large collinear blocks, which until now have been masked by a haploid chromosome number close to the lepidopteran average. We observe that ancient chromosome ends have been maintained and collinear blocks are enriched for functionally related genes suggesting both a mechanism and a possible role for selection in determining the boundaries of these genome-wide rearrangements.Peer reviewe

    Peripheral lymph nodes contain migratory and resident innate lymphoid cell populations

    Get PDF
    Tissue residency is considered a defining feature of the innate lymphoid cell (ILC) populations located within mucosal and adipose tissues. ILCs are also present within all lymphoid tissues, but whether ILCs migrate between lymphoid and nonlymphoid sites and in what context is poorly understood. To determine whether migratory ILCs exist within peripheral lymph nodes (LNs), we labeled all cells within the brachial LN (bLN) of transgenic mice expressing a photoconvertible fluorescent protein by direct exposure to light. Tracking of cellular changes in the labeled LN revealed the gradual migration of new ILCs into the tissue, balanced by egress of ILCs dependent on sphingosine-1-phosphate receptors. Most of the migratory ILCs were ILC1s, entering LNs directly from the circulation in a CD62L- and CCR7-dependent manner and thus behaving like conventional natural killer (cNK) cells. Upon egress, both ILC1s and cNK cells were found to recirculate through peripheral LNs. A distinct population of migratory ILC2s were detected in the LN, but most of the ILC3s were tissue resident. Functionally, both migratory and resident ILC1s within LNs were able to rapidly produce IFN-γ to support the generation of robust TH1 T cell responses after immunization. Thus, migratory and resident ILC populations exist within peripheral LNs, with ILC1s, akin to cNK cells, able to traffic into these tissues where they can contribute to the initiation of adaptive immunity

    Characterizing Brain and Behavioral Changes in a Mouse Model of Parkinson’s Disease

    No full text
    Parkinson’s Disease (PD) is the second most prevalent neurodegenerative disorder, characterized by the loss of SNc dopamine (DA) neurons, α-Synuclein protein aggregation, and progressive motor deficits. Available treatments for PD patients include DA replacement and other therapies that alleviate motor symptoms. However, these treatments have short-term effectiveness and do not modify disease progression. Additionally, although α-Syn clearance has been extensively researched as a potential target for PD treatment, the origin of α-Syn pathology remains unknown and mounting evidence suggests that α-Syn aggregation may be a symptom of PD, rather than a cause. For instance, heightened oxidative stress, including mitochondrial dysfunction and production of reactive oxygen species, has been implicated in α-Syn aggregation and may initiate the shift toward pathological α-Syn production. However, interventions that ameliorate these upstream pathways are largely underexplored. The goal of this project is to establish a scientific protocol that will allow us to investigate interventions that treat later-stage PD by modifying the underlying mechanisms of PD pathology. To do this, we will first use wild type mice to establish a workflow for assessing motor deficits on the rotarod and in an open field test. We will also demonstrate that we can replicate long-established techniques for characterizing nigrostriatal dopamine cell abundance, including Western blot and immunohistochemistry. Looking ahead, we hope to implement this protocol to characterize neurodegeneration in the MitoPark mouse, a cutting-edge mitochondrial dysfunction model of PD. Our future studies will explore the effect of oxidative stress-targeting treatments on altering disease progression in the MitoPark mouse

    Synergistic Actions of Blocking Angiopoietin-2 and Tumor Necrosis Factor-α in Suppressing Remodeling of Blood Vessels and Lymphatics in Airway Inflammation

    No full text
    Remodeling of blood vessels and lymphatics are prominent features of sustained inflammation. Angiopoietin-2 (Ang2)/Tie2 receptor signaling and tumor necrosis factor-α (TNF)/TNF receptor signaling are known to contribute to these changes in airway inflammation after Mycoplasma pulmonis infection in mice. We determined whether Ang2 and TNF are both essential for the remodeling on blood vessels and lymphatics, and thereby influence the actions of one another. Their respective contributions to the initial stage of vascular remodeling and sprouting lymphangiogenesis were examined by comparing the effects of function-blocking antibodies to Ang2 or TNF, given individually or together during the first week after infection. As indices of efficacy, vascular enlargement, endothelial leakiness, venular marker expression, pericyte changes, and lymphatic vessel sprouting were assessed. Inhibition of Ang2 or TNF alone reduced the remodeling of blood vessels and lymphatics, but inhibition of both together completely prevented these changes. Genome-wide analysis of changes in gene expression revealed synergistic actions of the antibody combination over a broad range of genes and signaling pathways involved in inflammatory responses. These findings demonstrate that Ang2 and TNF are essential and synergistic drivers of remodeling of blood vessels and lymphatics during the initial stage of inflammation after infection. Inhibition of Ang2 and TNF together results in widespread suppression of the inflammatory response

    Cannabidiol (CBD) drives sex-dependent impairments in omission, but has no effect on reinforcer devaluation

    No full text
    Habits are inflexible behaviors that persist despite changes in outcome value. While habits allow for efficient responding, neuropsychiatric diseases such as drug addiction and obsessive-compulsive disorder are characterized by overreliance on habits. Recently, the commercially popular drug cannabidiol (CBD) has emerged as a potential treatment for addictive behaviors, though it is not entirely clear how it exerts this therapeutic effect. As brain endocannabinoids play a key role in habit formation, we sought to determine how CBD modifies goal-directed behaviors and habit formation. To explore this, mice were administered CBD (20 mg/kg i.p.) or vehicle as a control and trained on random interval (RI30/60) or random ratio (RR10/20) schedules designed to elicit habitual or goal-directed lever pressing, respectively. Mice were tested for habitual responding using probe trials following reinforcer-specific devaluation as well as omission trials, where mice had to withhold responding to earn rewards. We found that while CBD had little effect on operant behaviors or reward devaluation, CBD inhibited goal-directed behavior in a sex-specific and context dependent manner during the omission task. Beyond drug treatment, we found an effect of sex throughout training, reward devaluation, and omission. This work provides evidence that CBD has no effect on habit formation in a reward devaluation paradigm. However, the omission results suggest that CBD may slow learning of novel action outcome contingencies or decrease goal-directed behavior. This work calls for further examination of sex-dependent outcomes of CBD treatment and highlights the importance of investigating sex effects in habit-related experiments

    Annotation of natural product compound families using molecular networking topology and structural similarity fingerprinting

    No full text
    Comparing experimental mass spectra to reference spectra can enable natural product identification, but these spectral libraries are often incomplete and not universally applicable. Here, the authors present SNAP-MS, a tool that allows assigning compound families without experimental or calculated reference spectra

    Structural complexity and molecular heterogeneity of a butterfly ejaculate reflect a complex history of selection

    No full text
    Male ejaculates are often structurally complex, and this complexity is likely to influence key reproductive interactions between males and females. However, despite its potential evolutionary significance, the molecular underpinnings of ejaculate structural complexity have received little empirical attention. To address this knowledge gap, we sought to understand the biochemical and functional properties of the structurally complex ejaculates of Pieris rapae butterflies. Males in this species produce large ejaculates called spermatophores composed of an outer envelope, an inner matrix, and a bolus of sperm. Females are thought to benefit from the nutrition contained in the soluble inner matrix through increases in longevity and fecundity. However, the indigestible outer envelope of the spermatophore delays female remating, allowing males to monopolize paternity for longer. Here, we show that these two nonsperm-containing spermatophore regions, the inner matrix and the outer envelope, differ in their protein composition and functional properties. We also reveal how these divergent protein mixtures are separately stored in the male reproductive tract and sequentially transferred to the female reproductive tract during spermatophore assembly. Intriguingly, we discovered large quantities of female-derived proteases in both spermatophore regions shortly after mating, which may contribute to spermatophore digestion and hence, female control over remating rate. Finally, we report evidence of past selection on these spermatophore proteins and female proteases, indicating a complex evolutionary history. Our findings illustrate how structural complexity of ejaculates may allow functionally and/or spatially associated suites of proteins to respond rapidly to divergent selective pressures, such as sexual conflict or reproductive cooperation

    Engraftment of Bacteria after Fecal Microbiota Transplantation Is Dependent on Both Frequency of Dosing and Duration of Preparative Antibiotic Regimen

    No full text
    The gut microbiota has emerged as a key mediator of human physiology, and germ-free mice have been essential in demonstrating a role for the microbiome in disease. Preclinical models using conventional mice offer the advantage of working with a mature immune system. However, optimal protocols for fecal microbiota transplant (FMT) engraftment in conventional mice are yet to be established. Conventional BALB/c mice were randomized to receive 3-day (3d) or 3-week (3w) antibiotic (ABX) regimen in their drinking water followed by 1 or 5-daily FMTs from a human donor. Fecal samples were collected longitudinally and characterized using 16S ribosomal RNA (rRNA) sequencing. Semi-targeted metabolomic profiling of fecal samples was also done with liquid chromatography–mass spectrometry (LC-MS). Lastly, we sought to confirm our findings in BKS mice. Recovery of baseline diversity scores were greatest in the 3d groups, driven by re-emergence of mouse commensal microbiota, whereas the most resemblance to donor microbiota was seen in the 3w + 5-FMT group. Amplicon sequence variants (ASVs) that were linked to the input material (human ASVs) engrafted to a significantly greater extent when compared to mouse ASVs in the 3-week groups but not the 3-day groups. Lastly, comparison of metabolomic profiles revealed distinct functional profiles by ABX regimen. These results indicate successful model optimization and emphasize the importance of ABX duration and frequency of FMT dosing; the most stable and reliable colonization by donor ASVs was seen in the 3wk + 5-FMT group
    corecore