249 research outputs found

    Heat induced HSP20 phosphorylation without increased cyclic nucleotide levels in swine carotid media

    Get PDF
    BACKGROUND: Heat pretreatment of swine carotid artery has been shown to increase ser(16)-heat shock protein 20 (HSP20) phosphorylation and suppress force, i.e., reduce force with only minimal reduction in ser(19)-myosin regulatory light chain (MRLC) phosphorylation. RESULTS: We further investigated this response in intact histamine stimulated swine carotid artery rings. There was a heat threshold such that increased ser(16)-HSP20 phosphorylation and force suppression were observed between 43°C and 46°C. The increased ser(16)-HSP20 phosphorylation persisted up to 16 hours after 44.5°C heat treatment. Pretreatment of swine carotid media at 44.5°C increased ser(16)-HSP20 phosphorylation without increases in [cAMP] or [cGMP], suggesting an alternate mechanism, perhaps phosphatase inhibition, for the increase in ser(16)-HSP20 phosphorylation. Heat pretreatment at 47.5°C reduced force by decreasing MRLC phosphorylation rather than by large increases in ser(16)-HSP20 phosphorylation. HSP20 phosphorylation at the putative PKC site did not change with any treatment. CONCLUSION: These results demonstrate that multiple mechanisms can induce force suppression that is correlated with ser(16)-HSP20 phosphorylation: 1) nitrovasodilators via cGMP, 2) forskolin via cAMP, and 2) thermal stress in a cyclic nucleotide independent manner

    Absence of force suppression in rabbit bladder correlates with low expression of heat shock protein 20

    Get PDF
    BACKGROUND: Nitroglycerin can induce relaxation of swine carotid artery without sustained reductions in [Ca(2+)](i )or myosin regulatory light chain (MRLC) phosphorylation. This has been termed force suppression and been found to correlate with ser(16)-phosphorylation of heat shock protein 20 (HSP20). We tested for the existence of this mechanism in a smooth muscle that is not responsive to nitric oxide. METHODS: Isometrically mounted mucosa free rabbit bladder strips were contracted with carbachol and relaxed with 8-Br-cGMP, forskolin, or isoprenaline. RESULTS: Contraction was associated with a highly cooperative relation between MRLC phosphorylation and force such that very small increases in MRLC phosphorylation induced large increases in force. Relaxation induced by 8-Br-cGMP, forskolin, or isoprenaline did not shift the MRLC phosphorylation-force relation from that observed with carbachol alone, i.e. there was no force suppression. HSP20 content was negligible (approximately two hundred-fold less than swine carotid). CONCLUSION: The lack of force suppression in the absence of HSP20 is consistent with the hypothesized role for HSP20 in the force suppression observed in tonic smooth muscles

    Free radical biology of the cardiovascular system

    Get PDF
    A B S T R A C T Most cardiovascular diseases (CVDs), as well as age-related cardiovascular alterations, are accompanied by increases in oxidative stress, usually due to increased generation and/or decreased metabolism of ROS (reactive oxygen species; for example superoxide radicals) and RNS (reactive nitrogen species; for example peroxynitrite). The superoxide anion is generated by several enzymatic reactions, including a variety of NADPH oxidases and uncoupled eNOS (endothelial NO synthase). To relieve the burden caused by this generation of free radicals, which also occurs as part of normal physiological processes, such as mitochondrial respiratory chain activity, mammalian systems have developed endogenous antioxidant enzymes. There is an increased usage of exogenous antioxidants such as vitamins C and E by many patients and the general public, ostensibly in an attempt to supplement intrinsic antioxidant activity. Unfortunately, the results of large-scale trails do not generate much enthusiasm for the continued use of antioxidants to mitigate free-radical-induced changes in the cardiovascular system. In the present paper, we review the clinical use of antioxidants by providing the rationale for their use and describe the outcomes of several large-scale trails that largely display negative outcomes. We also describe the emerging understanding of the detailed regulation of superoxide generation by an uncoupled eNOS and efforts to reverse eNOS uncoupling. SIRT1 (sirtuin 1), which regulates the expression and activity of multiple pro-and anti-oxidant enzymes, could be considered a candidate molecule for a 'molecular switch'

    Alcohol consumption and common carotid intima-media thickness: the USE-IMT study

    Get PDF
    Aims: Epidemiological evidence indicates a protective effect of light to moderate alcohol consumption compared to non-drinking and heavy drinking. Although several mechanisms have been suggested, the effect of alcohol on atherosclerotic changes in vessel walls is unclear. Therefore, we explored the relationship between alcohol consumption and common carotid intima media thickness, a marker of early atherosclerosis in the general population. Methods: Individual participant data from eight cohorts, involving 37,494 individuals from the USE-IMT collaboration were used. Multilevel age and sex adjusted linear regression models were applied to estimate mean differences in common carotid intima-media thickness (CIMT) with alcohol consumption. Results: The mean age was 57.9 years (SD 8.6) and the mean CIMT was 0.75 mm (SD 0.177). About, 40.5% reported no alcohol consumed, and among those who drank, mean consumption was 13.3 g per day (SD 16.4). Those consuming no alcohol or a very small amount (10 g per day, after adjusting for a range of confounding factors. Conclusion: In this large CIMT consortium, we did not find evidence to support a protective effect of alcohol on CIMT

    The Long-Baseline Neutrino Experiment: Exploring Fundamental Symmetries of the Universe

    Get PDF
    The preponderance of matter over antimatter in the early Universe, the dynamics of the supernova bursts that produced the heavy elements necessary for life and whether protons eventually decay --- these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our Universe, its current state and its eventual fate. The Long-Baseline Neutrino Experiment (LBNE) represents an extensively developed plan for a world-class experiment dedicated to addressing these questions. LBNE is conceived around three central components: (1) a new, high-intensity neutrino source generated from a megawatt-class proton accelerator at Fermi National Accelerator Laboratory, (2) a near neutrino detector just downstream of the source, and (3) a massive liquid argon time-projection chamber deployed as a far detector deep underground at the Sanford Underground Research Facility. This facility, located at the site of the former Homestake Mine in Lead, South Dakota, is approximately 1,300 km from the neutrino source at Fermilab -- a distance (baseline) that delivers optimal sensitivity to neutrino charge-parity symmetry violation and mass ordering effects. This ambitious yet cost-effective design incorporates scalability and flexibility and can accommodate a variety of upgrades and contributions. With its exceptional combination of experimental configuration, technical capabilities, and potential for transformative discoveries, LBNE promises to be a vital facility for the field of particle physics worldwide, providing physicists from around the globe with opportunities to collaborate in a twenty to thirty year program of exciting science. In this document we provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess.Comment: Major update of previous version. This is the reference document for LBNE science program and current status. Chapters 1, 3, and 9 provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess. 288 pages, 116 figure

    The Fourteenth Data Release of the Sloan Digital Sky Survey: First Spectroscopic Data from the extended Baryon Oscillation Spectroscopic Survey and from the second phase of the Apache Point Observatory Galactic Evolution Experiment

    Get PDF
    The fourth generation of the Sloan Digital Sky Survey (SDSS-IV) has been in operation since July 2014. This paper describes the second data release from this phase, and the fourteenth from SDSS overall (making this, Data Release Fourteen or DR14). This release makes public data taken by SDSS-IV in its first two years of operation (July 2014-2016). Like all previous SDSS releases, DR14 is cumulative, including the most recent reductions and calibrations of all data taken by SDSS since the first phase began operations in 2000. New in DR14 is the first public release of data from the extended Baryon Oscillation Spectroscopic Survey (eBOSS); the first data from the second phase of the Apache Point Observatory (APO) Galactic Evolution Experiment (APOGEE-2), including stellar parameter estimates from an innovative data driven machine learning algorithm known as "The Cannon"; and almost twice as many data cubes from the Mapping Nearby Galaxies at APO (MaNGA) survey as were in the previous release (N = 2812 in total). This paper describes the location and format of the publicly available data from SDSS-IV surveys. We provide references to the important technical papers describing how these data have been taken (both targeting and observation details) and processed for scientific use. The SDSS website (www.sdss.org) has been updated for this release, and provides links to data downloads, as well as tutorials and examples of data use. SDSS-IV is planning to continue to collect astronomical data until 2020, and will be followed by SDSS-V.Comment: SDSS-IV collaboration alphabetical author data release paper. DR14 happened on 31st July 2017. 19 pages, 5 figures. Accepted by ApJS on 28th Nov 2017 (this is the "post-print" and "post-proofs" version; minor corrections only from v1, and most of errors found in proofs corrected

    The Gravity Collective: A Search for the Electromagnetic Counterpart to the Neutron Star-Black Hole Merger GW190814

    Full text link
    We present optical follow-up imaging obtained with the Katzman Automatic Imaging Telescope, Las Cumbres Observatory Global Telescope Network, Nickel Telescope, Swope Telescope, and Thacher Telescope of the LIGO/Virgo gravitational wave (GW) signal from the neutron star-black hole (NSBH) merger GW190814. We searched the GW190814 localization region (19 deg2^{2} for the 90th percentile best localization), covering a total of 51 deg2^{2} and 94.6% of the two-dimensional localization region. Analyzing the properties of 189 transients that we consider as candidate counterparts to the NSBH merger, including their localizations, discovery times from merger, optical spectra, likely host-galaxy redshifts, and photometric evolution, we conclude that none of these objects are likely to be associated with GW190814. Based on this finding, we consider the likely optical properties of an electromagnetic counterpart to GW190814, including possible kilonovae and short gamma-ray burst afterglows. Using the joint limits from our follow-up imaging, we conclude that a counterpart with an rr-band decline rate of 0.68 mag day1^{-1}, similar to the kilonova AT 2017gfo, could peak at an absolute magnitude of at most 17.8-17.8 mag (50% confidence). Our data are not constraining for ''red'' kilonovae and rule out ''blue'' kilonovae with M>0.5MM>0.5 M_{\odot} (30% confidence). We strongly rule out all known types of short gamma-ray burst afterglows with viewing angles <<17^{\circ} assuming an initial jet opening angle of \sim5.25.2^{\circ} and explosion energies and circumburst densities similar to afterglows explored in the literature. Finally, we explore the possibility that GW190814 merged in the disk of an active galactic nucleus, of which we find four in the localization region, but we do not find any candidate counterparts among these sources.Comment: 86 pages, 9 figure

    Sloan Digital Sky Survey IV: Mapping the Milky Way, Nearby Galaxies, and the Distant Universe

    Get PDF
    We describe the Sloan Digital Sky Survey IV (SDSS-IV), a project encompassing three major spectroscopic programs. The Apache Point Observatory Galactic Evolution Experiment 2 (APOGEE-2) is observing hundreds of thousands of Milky Way stars at high resolution and high signal-to-noise ratios in the near-infrared. The Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey is obtaining spatially resolved spectroscopy for thousands of nearby galaxies (median z0.03z\sim 0.03). The extended Baryon Oscillation Spectroscopic Survey (eBOSS) is mapping the galaxy, quasar, and neutral gas distributions between z0.6z\sim 0.6 and 3.5 to constrain cosmology using baryon acoustic oscillations, redshift space distortions, and the shape of the power spectrum. Within eBOSS, we are conducting two major subprograms: the SPectroscopic IDentification of eROSITA Sources (SPIDERS), investigating X-ray AGNs and galaxies in X-ray clusters, and the Time Domain Spectroscopic Survey (TDSS), obtaining spectra of variable sources. All programs use the 2.5 m Sloan Foundation Telescope at the Apache Point Observatory; observations there began in Summer 2014. APOGEE-2 also operates a second near-infrared spectrograph at the 2.5 m du Pont Telescope at Las Campanas Observatory, with observations beginning in early 2017. Observations at both facilities are scheduled to continue through 2020. In keeping with previous SDSS policy, SDSS-IV provides regularly scheduled public data releases; the first one, Data Release 13, was made available in 2016 July
    corecore