2,110 research outputs found

    Rationalizing the Different Products in the Reaction of N\u3csub\u3e2\u3c/sub\u3e with Three-coordinate MoL\u3csub\u3e3\u3c/sub\u3e Complexes

    Get PDF
    The reaction of N2 with three-coordinate MoL3 complexes is known to give rise to different products, N–MoL3, L3Mo–N–MoL3 or Mo2L6, depending on the nature of the ligand L. The energetics of the different reaction pathways are compared for L = NH2, NMe2, N(iPr)Ar and N(tBu)Ar (Ar = 3,5-C6H3Me2) using density functional methods in order to rationalize the experimental results. Overall, the exothermicity of each reaction pathway decreases as the ligand size increases, largely due to the increased steric crowding in the products compared to reactants. In the absence of steric strain, the formation of the metal–metal bonded dimer, Mo2L6, is the most exothermic pathway but this reaction shows the greatest sensitivity to ligand size varying from significantly exothermic, −403 kJ mol−1 for L = NMe2, to endothermic, +78 kJ mol−1 for L = N(tBu)Ar. For all four ligands, formation of N–MoL3via cleavage of the N2 bridged dimer intermediate, L3Mo–N–N–MoL3, is strongly exothermic. However, in the presence of excess reactant MoL3, formation of the single atom-bridged complex L3Mo–N–MoL3 from N–MoL3 + MoL3 is both thermodynamically and kinetically favoured for L = NMe2 and N(iPr)Ar, in agreement with experiment. In the case of L = N(tBu)Ar, the greater steric bulk of the tBu group results in a much less exothermic reaction and a calculated barrier of 66 kJ mol−1 to formation of the L3Mo–N–MoL3 dimer. Consequently, for this ligand, the energetically and kinetically favoured product, consistent with the experimental data, is the nitride complex L3Mo–N

    Proton supplier role of binuclear gold complexes in promoting hydrofunctionalisation of nonactivated alkenes

    Get PDF
    Density functional theory (DFT) was used to investigate PR 3 AuOTf-catalyzed hydrofunctionalisation of nonactivated alkenes using acetic acid and phenol where OTf = triflate (CF 3 SO 3- ). The gold(i) complex itself is found to be unlikely to operate as the π-activator due to its relatively low electrophilicity. Instead, the concurrent coordination of two gold(i) complexes to a nucleophile (PhOH or AcOH) enhances the acidity of the latter\u27s proton and causes the ensuing binuclear complex to serve as a strong proton supplier for activating the alkene π-bonds. Alternatively, the binuclear complex is also susceptible to produce a hidden HOTf. This hidden acid is accessible for hydrofunctionalization to occur but it is not in sufficient concentration to decompose the final product

    Characterisation of treated effluent from four commonly employed wastewater treatment facilities:A UK case study

    Get PDF
    Sewage treatment systems are a common feature across the landscape of the United Kingdom, serving an estimated 96% of the population and discharging approximately eleven billion litres of treated wastewater daily. While large treatment facilities are ubiquitous across the landscape, they are not the only method employed in domestic wastewater treatment. This study investigates whether differences in nutrient export (carbon, nitrogen and phosphorus) and organic matter composition (determined by optical indices, SUVA254, S350-400 and E2:E3) from treated effluent could be detected between four of the most common facilities employed in the treatment of wastewater across the UK. Set in the context of the River Wylye, a small headwater catchment, treatment facilities studied included; a septic tank system, small packet treatment works, and two large sewage treatment works, one of which employed phosphorus stripping for phosphorus removal. Inorganic N and P concentrations ranged between 7.51 and 42.4 mg N l−1 and 0.22 and 8.9 mg P l−1 respectively, with DOC concentrations ranging between 1.63 and 11.8 mg C l−1. Optical indices were comparable to those observed in catchments where organic matter is dominated by autochthonous production, suggesting the dominance of low molecular weight material when compared to values observed across temperate aquatic systems. Combining data from both the Environment Agency and Ordinance Survey we estimate that only 15% of domestic properties not connected to mains sewerage in the study catchment have an Environment Agency consent/exemption permit. This calculation suggests that the quantity of small point sources are significantly underestimated, undermining efforts under current legislation to improve stream ecosystem health.</p

    Microbial uptake kinetics of dissolved organic carbon (DOC) compound groups from river water and sediments

    Get PDF
    Dissolved organic matter (DOM) represents a key component of carbon (C) cycling in freshwater ecosystems. While the behaviour of bulk dissolved organic carbon (DOC) in aquatic ecosystems is well studied, comparatively little is known about the turnover of specific DOC compounds. The aim of this study was to investigate the persistence of 14C-labelled low molecular weight (LMW) DOC at a wide range of concentrations (0.1 µM to 10 mM), in sediments and waters from oligotrophic and mesotrophic rivers within the same catchment. Overall, rates of DOC loss varied between compound groups (amino acids > sugars = organic acids > phenolics). Sediment-based microbial communities contributed to higher DOC loss from river waters, which was attributed, in part, to its greater microbial biomass. At higher DOC compound concentrations, DOC loss was greater in mesotrophic rivers in comparison to oligotrophic headwaters. A lag-phase in substrate use within sediments provided evidence of microbial growth and adaptation, ascribed here to the lack of inorganic nutrient limitation on microbial C processing in mesotrophic communities. We conclude that the higher microbial biomass and available inorganic nutrients in sediments enables the rapid processing of LMW DOC, particularly during high C enrichment events and in N and P-rich mesotrophic environments

    Independent and Interactive Influences of Environmental UVR, Vitamin D Levels, and Folate Variant MTHFD1-rs2236225 on Homocysteine Levels

    Get PDF
    Elevated homocysteine (Hcy) levels are a risk factor for vascular diseases. Recently, increases in ultraviolet radiation (UVR) have been linked to decreased Hcy levels. This relationship may be mediated by the status of UVR-responsive vitamins, vitamin D and folate, and/or genetic variants influencing their levels; however, this has yet to be examined. Therefore, the independent and interactive influences of environmental UVR, vitamin D and folate levels and related genetic variants on Hcy levels were examined in an elderly Australian cohort (n = 619). Red blood cell folate, 25-hydroxyvitamin D (25(OH)D), and plasma Hcy levels were determined, and genotyping for 21 folate and vitamin D-related variants was performed. Erythemal dose rate accumulated over six-weeks (6W-EDR) and four-months (4M-EDR) prior to clinics were calculated as a measure of environmental UVR. Multivariate analyses found interactions between 6W-EDR and 25(OH)D levels (pinteraction = 0.002), and 4M-EDR and MTHFD1-rs2236225 (pinteraction = 0.006) in predicting Hcy levels. The association between 6W-EDR and Hcy levels was found only in subjects within lower 25(OH)D quartiles (<33.26 ng/mL), with the association between 4M-EDR and Hcy occurring only in subjects carrying the MTHFD1-rs2236225 variant. 4M-EDR, 6W-EDR, and MTHFD1-rs2236225 were also independent predictors of Hcy. Findings highlight nutrient–environment and gene–environment interactions that could influence the risk of Hcy-related outcomes

    MiR-15a/miR-16-1 expression inversely correlates with cyclin D1 levels in Men1 pituitary NETs

    Get PDF
    Multiple Endocrine Neoplasia type 1 (MEN1) is an autosomal dominant disorder characterised by the combined occurrence of parathyroid, pituitary and pancreatic islet tumours, and is due to mutations of the MEN1 gene, which encodes the tumour suppressor protein menin. Menin has multiple roles in genome stability, transcription, cell division and proliferation, but its mechanistic roles in tumourigenesis remain to be fully elucidated. MicroRNAs (miRNA) are non-coding single stranded RNAs that post-transcriptionally regulate gene expression and have been associated with tumour development, although the contribution of miRNAs to MEN1-associated tumourigenesis and their relationship with menin expression are not fully understood. Alterations in miRNA expression, including downregulation of three putative ‘tumour suppressor’ miRNAs, miR-15a, miR-16-1 and let 7a, have been reported in several tumour types including non-MEN1 pituitary adenomas. We have therefore investigated the expression of miR-15a, miR-16-1 and let-7a in pituitary tumours that developed after 12 months of age in female mice with heterozygous knock out of the Men1 gene (Men1+/- 41 mice). The miRNAs miR-15a, miR-16-1 and let-7a were significantly downregulated in pituitary tumours (by 2.3-fold, p<0.05; 2.1-fold p<0.01 and 1.6-fold p<0.05, respectively) of Men1+/- 43 mice, compared to normal wild type pituitaries. MiR-15a and miR-16-1 expression inversely correlated with expression of cyclin D1, a known pro-tumourigenic target of these miRNAs, and knock down of menin in a human cancer cell line (HeLa), and AtT20 mouse pituitary cell line resulted in significantly decreased expression of miR-15a (p<0.05), indicating that the decrease in miR-15a may be a direct result of lost menin expression
    • …
    corecore