78 research outputs found

    The American Association for the Surgery of Trauma renal injury grading scale: Implications of the 2018 revisions for injury reclassification and predicting bleeding interventions.

    Get PDF
    BackgroundIn 2018, the American Association for the Surgery of Trauma (AAST) published revisions to the renal injury grading system to reflect the increased reliance on computed tomography scans and non-operative management of high-grade renal trauma (HGRT). We aimed to evaluate how these revisions will change the grading of HGRT and if it outperforms the original 1989 grading in predicting bleeding control interventions.MethodsData on HGRT were collected from 14 Level-1 trauma centers from 2014 to 2017. Patients with initial computed tomography scans were included. Two radiologists reviewed the scans to regrade the injuries according to the 1989 and 2018 AAST grading systems. Descriptive statistics were used to assess grade reclassifications. Mixed-effect multivariable logistic regression was used to measure the predictive ability of each grading system. The areas under the curves were compared.ResultsOf the 322 injuries included, 27.0% were upgraded, 3.4% were downgraded, and 69.5% remained unchanged. Of the injuries graded as III or lower using the 1989 AAST, 33.5% were upgraded to grade IV using the 2018 AAST. Of the grade V injuries, 58.8% were downgraded using the 2018 AAST. There was no statistically significant difference in the overall areas under the curves between the 2018 and 1989 AAST grading system for predicting bleeding interventions (0.72 vs. 0.68, p = 0.34).ConclusionAbout one third of the injuries previously classified as grade III will be upgraded to grade IV using the 2018 AAST, which adds to the heterogeneity of grade IV injuries. Although the 2018 AAST grading provides more anatomic details on injury patterns and includes important radiologic findings, it did not outperform the 1989 AAST grading in predicting bleeding interventions.Level of evidencePrognostic and Epidemiological Study, level III

    Synthesis

    Get PDF
    Human activity in the last century has led to a substantial increase in nitrogen (N) emissions and deposition. This N deposition has reached a level that has caused or is likely to cause alterations to the structure and function of many ecosystems across the United States. One approach for quantifying the level of pollution that would be harmful to ecosystems is the critical loads approach. The critical load is dei ned as the level of a pollutant below which no detrimental ecological effect occurs over the long term according to present knowledge. The objective of this project was to synthesize current research relating atmospheric N deposition to effects on terrestrial and aquatic ecosystems in the United States and to identify empirical critical loads for atmospheric N deposition. The receptors that we evaluated included freshwater diatoms, mycorrhizal fungi and other soil microbes, lichens, herbaceous plants, shrubs, and trees. The main responses reported fell into two categories: (1) biogeochemical, and (2) individual species, population, and community responses. This report synthesizes current research relating atmospheric nitrogen (N) deposition to effects on terrestrial and aquatic ecosystems in the United States and to identify empirical critical loads for atmospheric N deposition. The report evaluates the following receptors: freshwater diatoms, mycorrhizal fungi and other soil microbes, lichens, herbaceous plants, shrubs, and trees. The main responses reported fell into two categories: (1) biogeochemical; and (2) individual species, population, and community responses. The range of critical loads for nutrient N reported for U.S. ecoregions, inland surface waters, and freshwater wetlands is 1 to 39 kg N ha-1 y-1. This range spans the range of N deposition observed over most of the country. The empirical critical loads for N tend to increase in the following sequence for different life forms: diatoms, lichens and bryophytes, mycorrhizal fungi, herbaceous plants and shrubs, trees

    Synthesis

    Get PDF
    Human activity in the last century has led to a substantial increase in nitrogen (N) emissions and deposition. This N deposition has reached a level that has caused or is likely to cause alterations to the structure and function of many ecosystems across the United States. One approach for quantifying the level of pollution that would be harmful to ecosystems is the critical loads approach. The critical load is dei ned as the level of a pollutant below which no detrimental ecological effect occurs over the long term according to present knowledge. The objective of this project was to synthesize current research relating atmospheric N deposition to effects on terrestrial and aquatic ecosystems in the United States and to identify empirical critical loads for atmospheric N deposition. The receptors that we evaluated included freshwater diatoms, mycorrhizal fungi and other soil microbes, lichens, herbaceous plants, shrubs, and trees. The main responses reported fell into two categories: (1) biogeochemical, and (2) individual species, population, and community responses. This report synthesizes current research relating atmospheric nitrogen (N) deposition to effects on terrestrial and aquatic ecosystems in the United States and to identify empirical critical loads for atmospheric N deposition. The report evaluates the following receptors: freshwater diatoms, mycorrhizal fungi and other soil microbes, lichens, herbaceous plants, shrubs, and trees. The main responses reported fell into two categories: (1) biogeochemical; and (2) individual species, population, and community responses. The range of critical loads for nutrient N reported for U.S. ecoregions, inland surface waters, and freshwater wetlands is 1 to 39 kg N ha-1 y-1. This range spans the range of N deposition observed over most of the country. The empirical critical loads for N tend to increase in the following sequence for different life forms: diatoms, lichens and bryophytes, mycorrhizal fungi, herbaceous plants and shrubs, trees

    Population gene introgression and high genome plasticity for the zoonotic pathogen Streptococcus agalactiae

    Get PDF
    The influence that bacterial adaptation (or niche partitioning) within species has on gene spillover and transmission among bacteria populations occupying different niches is not well understood. Streptococcus agalactiae is an important bacterial pathogen that has a taxonomically diverse host range making it an excellent model system to study these processes. Here we analyze a global set of 901 genome sequences from nine diverse host species to advance our understanding of these processes. Bayesian clustering analysis delineated twelve major populations that closely aligned with niches. Comparative genomics revealed extensive gene gain/loss among populations and a large pan-genome of 9,527 genes, which remained open and was strongly partitioned among niches. As a result, the biochemical characteristics of eleven populations were highly distinctive (significantly enriched). Positive selection was detected and biochemical characteristics of the dispensable genes under selection were enriched in ten populations. Despite the strong gene partitioning, phylogenomics detected gene spillover. In particular, tetracycline resistance (which likely evolved in the human-associated population) from humans to bovine, canines, seals, and fish, demonstrating how a gene selected in one host can ultimately be transmitted into another, and biased transmission from humans to bovines was confirmed with a Bayesian migration analysis. Our findings show high bacterial genome plasticity acting in balance with selection pressure from distinct functional requirements of niches that is associated with an extensive and highly partitioned dispensable genome, likely facilitating continued and expansive adaptation

    Delegation and coordination with multiple threshold public goods: experimental evidence

    Get PDF
    When multiple charities, social programs and community projects simultaneously vie for funding, donors risk mis-coordinating their contributions leading to an inefficient distribution of funding across projects. Community chests and other intermediary organizations facilitate coordination among donors and reduce such risks. To study this, we extend a threshold public goods framework to allow donors to contribute through an intermediary rather than directly to the public goods. Through a series of experiments, we show that the presence of an intermediary increases public good success and subjects’ earnings only when the intermediary is formally committed to direct donations to socially beneficial goods. Without such a restriction, the presence of an intermediary has a negative impact, complicating the donation environment, decreasing contributions and public good success.When multiple charities, social programs and community projects simultaneously vie for funding, donors risk mis-coordinating their contributions leading to an inefficient distribution of funding across projects. Community chests and other intermediary organizations facilitate coordination among donors and reduce such risks. To study this, we extend a threshold public goods framework to allow donors to contribute through an intermediary rather than directly to the public goods. Through a series of experiments, we show that the presence of an intermediary increases public good success and subjects’ earnings only when the intermediary is formally committed to direct donations to socially beneficial goods. Without such a restriction, the presence of an intermediary has a negative impact, complicating the donation environment, decreasing contributions and public good success

    Rehabilitation versus surgical reconstruction for non-acute anterior cruciate ligament injury (ACL SNNAP): a pragmatic randomised controlled trial

    Get PDF
    BackgroundAnterior cruciate ligament (ACL) rupture is a common debilitating injury that can cause instability of the knee. We aimed to investigate the best management strategy between reconstructive surgery and non-surgical treatment for patients with a non-acute ACL injury and persistent symptoms of instability.MethodsWe did a pragmatic, multicentre, superiority, randomised controlled trial in 29 secondary care National Health Service orthopaedic units in the UK. Patients with symptomatic knee problems (instability) consistent with an ACL injury were eligible. We excluded patients with meniscal pathology with characteristics that indicate immediate surgery. Patients were randomly assigned (1:1) by computer to either surgery (reconstruction) or rehabilitation (physiotherapy but with subsequent reconstruction permitted if instability persisted after treatment), stratified by site and baseline Knee Injury and Osteoarthritis Outcome Score—4 domain version (KOOS4). This management design represented normal practice. The primary outcome was KOOS4 at 18 months after randomisation. The principal analyses were intention-to-treat based, with KOOS4 results analysed using linear regression. This trial is registered with ISRCTN, ISRCTN10110685, and ClinicalTrials.gov, NCT02980367.FindingsBetween Feb 1, 2017, and April 12, 2020, we recruited 316 patients. 156 (49%) participants were randomly assigned to the surgical reconstruction group and 160 (51%) to the rehabilitation group. Mean KOOS4 at 18 months was 73·0 (SD 18·3) in the surgical group and 64·6 (21·6) in the rehabilitation group. The adjusted mean difference was 7·9 (95% CI 2·5–13·2; p=0·0053) in favour of surgical management. 65 (41%) of 160 patients allocated to rehabilitation underwent subsequent surgery according to protocol within 18 months. 43 (28%) of 156 patients allocated to surgery did not receive their allocated treatment. We found no differences between groups in the proportion of intervention-related complications.InterpretationSurgical reconstruction as a management strategy for patients with non-acute ACL injury with persistent symptoms of instability was clinically superior and more cost-effective in comparison with rehabilitation management

    Omecamtiv mecarbil in chronic heart failure with reduced ejection fraction, GALACTIC‐HF: baseline characteristics and comparison with contemporary clinical trials

    Get PDF
    Aims: The safety and efficacy of the novel selective cardiac myosin activator, omecamtiv mecarbil, in patients with heart failure with reduced ejection fraction (HFrEF) is tested in the Global Approach to Lowering Adverse Cardiac outcomes Through Improving Contractility in Heart Failure (GALACTIC‐HF) trial. Here we describe the baseline characteristics of participants in GALACTIC‐HF and how these compare with other contemporary trials. Methods and Results: Adults with established HFrEF, New York Heart Association functional class (NYHA) ≄ II, EF ≀35%, elevated natriuretic peptides and either current hospitalization for HF or history of hospitalization/ emergency department visit for HF within a year were randomized to either placebo or omecamtiv mecarbil (pharmacokinetic‐guided dosing: 25, 37.5 or 50 mg bid). 8256 patients [male (79%), non‐white (22%), mean age 65 years] were enrolled with a mean EF 27%, ischemic etiology in 54%, NYHA II 53% and III/IV 47%, and median NT‐proBNP 1971 pg/mL. HF therapies at baseline were among the most effectively employed in contemporary HF trials. GALACTIC‐HF randomized patients representative of recent HF registries and trials with substantial numbers of patients also having characteristics understudied in previous trials including more from North America (n = 1386), enrolled as inpatients (n = 2084), systolic blood pressure < 100 mmHg (n = 1127), estimated glomerular filtration rate < 30 mL/min/1.73 m2 (n = 528), and treated with sacubitril‐valsartan at baseline (n = 1594). Conclusions: GALACTIC‐HF enrolled a well‐treated, high‐risk population from both inpatient and outpatient settings, which will provide a definitive evaluation of the efficacy and safety of this novel therapy, as well as informing its potential future implementation
    • 

    corecore