3,248 research outputs found

    LEADING INDICATORS FOR REGIONAL COTTON RESPONSE: STRUCTURAL AND TIME SERIES MODELING RESULTS

    Get PDF
    Resurging southeastern cotton production compels better cotton acreage forecasts for planning seed, chemical, and other input requirements. Structural models describe leading acreage response indicators, and forecasts are compared time-series models. Cotton price, loan rate, deficiency payments, lagged corn acreage, the PIK program, and previous cotton yield significantly influence response.Crop Production/Industries,

    LEADING INDICATORS OF REGIONAL COTTON ACREAGE RESPONSE: STRUCTURAL AND TIME SERIES MODELING RESULTS

    Get PDF
    Resurgent cotton production compels better acreage forecasts for planning seed, chemical, and other input requirements. Structural models describe leading acreage response indicators, and forecasts are compared to time-series models. Cotton price, loan rate, deficiency payments, lagged corn acreage, the PIK program, and previous cotton yield significantly influence cotton acreage response.resurgent cotton production, cotton acreage, Crop Production/Industries,

    Soil Shear Strength Losses In Two Fresh Marshes With Variable Increases In N And P Loading

    Get PDF
    We measured soil shear strength (SSS) from 2009 to 2018 in two hydrologically distinct freshwater marshes dominated by Panicum hemitomon after nitrogen (N) and phosphorous (P) were applied to the surface in spring. The SSS averaged over 100-cm depth in the floating and anchored marshes declined up to 30% throughout the profiles and with no apparent differences in the effects of the low, medium, and high N + P dosing. Plots with only N or P additions exhibited significant changes in SSS at individual depths below 40 cm for the anchored marsh, but not the floating marsh. The average SSS for the anchored marsh over the entire 100 cm profile declined when N and P were added separately or together. At the floating marsh, however, the SSS decreased when N and P were added in combination, or P alone, but not for the N addition. Increasing nutrient availability to these freshwater marsh soils makes them weaker, and perhaps lost if eroded or uplifted by buoyant forces during storms. These results are consistent with results from multi-year experiments demonstrating higher decomposition rates, greenhouse gas emissions, and carbon losses in wetlands following increased nutrient availability

    Diabolical survival in Death Valley: recent pupfish colonization, gene flow and genetic assimilation in the smallest species range on earth

    Get PDF
    One of the most endangered vertebrates, the Devils Hole pupfish Cyprinodon diabolis, survives in a nearly impossible environment: a narrow subterranean fissure in the hottest desert on earth, Death Valley. This species became a conservation icon after a landmark 1976 US Supreme Court case affirming federal groundwater rights to its unique habitat. However, one outstanding question about this species remains unresolved: how long has diabolis persisted in this hellish environment? We used next-generation sequencing of over 13 000 loci to infer the demographic history of pupfishes in Death Valley. Instead of relicts isolated 2–3 Myr ago throughout repeated flooding of the entire region by inland seas as currently believed, we present evidence for frequent gene flow among Death Valley pupfish species and divergence after the most recent flooding 13 kyr ago. We estimate that Devils Hole was colonized by pupfish between 105 and 830 years ago, followed by genetic assimilation of pelvic fin loss and recent gene flow into neighbouring spring systems. Our results provide a new perspective on an iconic endangered species using the latest population genomic methods and support an emerging consensus that timescales for speciation are overestimated in many groups of rapidly evolving species

    A new approach for scaling beach profile evolution and sediment transport rates in distorted laboratory models

    Get PDF
    Laboratory wave flume experiments in coastal engineering and physical oceanography are widely used to provide an improved understanding of morphodynamic processes. Wave flume facilities around the world vary greatly in their physical dimensions and differences in the resulting distortion of the modelled processes are reconciled using scaling laws. However, it is known that perfect model-prototype scaling of all hydro and morphodynamic processes is rarely possible and there is a lack of understanding to what extent distorted models can be used for direct morphological comparison. To address this issue, distorted scale laboratory flume experiments were undertaken in three different facilities, with the aim to measure and compare beach profile evolution under erosive waves and increasing water levels. A novel approach was developed to transform and scale the different experimental geometries into dimensionless coordinates, which enabled a direct quantitative comparison of the beach profile evolution and sediment transport rates between the differing distorted experimental scales. Comparing results from the three experiments revealed that the dimensionless scaled morphological behaviour was similar after the same number of waves – despite very different degrees of model distortion. The distorted profiles appeared to be suitable for comparison as long as a modified version of the Dean number is maintained between them. The new method was then validated with two further published datasets, and showed good agreement for both dimensionless profile shape, dimensionless sediment transport and morphodynamics parameters. The new approach scales the sediment transport by the square of the runup, proportional to HL, rather than H2, and yields good agreement between the datasets. It is further shown that the new scaling method is also applicable for comparing distorted profile evolution under water level increase, as long as the water level is raised in a similar way between the experiments and by the same total increment relative to the significant wave height (Δh/Hs).</p

    A new approach for scaling beach profile evolution and sediment transport rates in distorted laboratory models

    Get PDF
    Laboratory wave flume experiments in coastal engineering and physical oceanography are widely used to provide an improved understanding of morphodynamic processes. Wave flume facilities around the world vary greatly in their physical dimensions and differences in the resulting distortion of the modelled processes are reconciled using scaling laws. However, it is known that perfect model-prototype scaling of all hydro and morphodynamic processes is rarely possible and there is a lack of understanding to what extent distorted models can be used for direct morphological comparison. To address this issue, distorted scale laboratory flume experiments were undertaken in three different facilities, with the aim to measure and compare beach profile evolution under erosive waves and increasing water levels. A novel approach was developed to transform and scale the different experimental geometries into dimensionless coordinates, which enabled a direct quantitative comparison of the beach profile evolution and sediment transport rates between the differing distorted experimental scales. Comparing results from the three experiments revealed that the dimensionless scaled morphological behaviour was similar after the same number of waves – despite very different degrees of model distortion. The distorted profiles appeared to be suitable for comparison as long as a modified version of the Dean number is maintained between them. The new method was then validated with two further published datasets, and showed good agreement for both dimensionless profile shape, dimensionless sediment transport and morphodynamics parameters. The new approach scales the sediment transport by the square of the runup, proportional to HL, rather than H2, and yields good agreement between the datasets. It is further shown that the new scaling method is also applicable for comparing distorted profile evolution under water level increase, as long as the water level is raised in a similar way between the experiments and by the same total increment relative to the significant wave height (Δh/Hs).</p

    Optoelectronic analysis of multijunction wire array solar cells

    Get PDF
    Wire arrays have demonstrated promising photovoltaic performance as single junction solar cells and are well suited to defect mitigation in heteroepitaxy. These attributes can combine in tandem wire array solar cells, potentially leading to high efficiencies. Here, we demonstrate initial growths of GaAs on Si_(0.9)Ge_(0.1) structures and investigate III-V on Si_(1-x)Ge_x device design with an analytical model and optoelectronic simulations. We consider Si_(0.1)Ge_(0.9) wires coated with a GaAs_(0.9)P_(0.1) shell in three different geometries: conformal, hemispherical, and spherical. The analytical model indicates that efficiencies approaching 34% are achievable with high quality materials. Full field electromagnetic simulations serve to elucidate the optical loss mechanisms and demonstrate light guiding into the wire core. Simulated current-voltage curves under solar illumination reveal the impact of a varying GaAs_(0.9)P_(0.1) minority carrier lifetime. Finally, defective regions at the hetero-interface are shown to have a negligible effect on device performance if highly doped so as to serve as a back surface field. Overall, the growths and the model demonstrate the feasibility of the proposed geometries and can be used to guide tandem wire array solar cell designs

    Phosphorylation of actopaxin regulates cell spreading and migration

    Get PDF
    Actopaxin is an actin and paxillin binding protein that localizes to focal adhesions. It regulates cell spreading and is phosphorylated during mitosis. Herein, we identify a role for actopaxin phosphorylation in cell spreading and migration. Stable clones of U2OS cells expressing actopaxin wild-type (WT), nonphosphorylatable, and phosphomimetic mutants were developed to evaluate actopaxin function. All proteins targeted to focal adhesions, however the nonphosphorylatable mutant inhibited spreading whereas the phosphomimetic mutant cells spread more efficiently than WT cells. Endogenous and WT actopaxin, but not the nonphosphorylatable mutant, were phosphorylated in vivo during cell adhesion/spreading. Expression of the nonphosphorylatable actopaxin mutant significantly reduced cell migration, whereas expression of the phosphomimetic increased cell migration in scrape wound and Boyden chamber migration assays. In vitro kinase assays demonstrate that extracellular signal-regulated protein kinase phosphorylates actopaxin, and treatment of U2OS cells with the MEK1 inhibitor UO126 inhibited adhesion-induced phosphorylation of actopaxin and also inhibited cell migration
    • …
    corecore