7 research outputs found

    Discovering Networks of Perturbed Biological Processes in Hepatocyte Cultures

    Get PDF
    The liver plays a vital role in glucose homeostasis, the synthesis of bile acids and the detoxification of foreign substances. Liver culture systems are widely used to test adverse effects of drugs and environmental toxicants. The two most prevalent liver culture systems are hepatocyte monolayers (HMs) and collagen sandwiches (CS). Despite their wide use, comprehensive transcriptional programs and interaction networks in these culture systems have not been systematically investigated. We integrated an existing temporal transcriptional dataset for HM and CS cultures of rat hepatocytes with a functional interaction network of rat genes. We aimed to exploit the functional interactions to identify statistically significant linkages between perturbed biological processes. To this end, we developed a novel approach to compute Contextual Biological Process Linkage Networks (CBPLNs). CBPLNs revealed numerous meaningful connections between different biological processes and gene sets, which we were successful in interpreting within the context of liver metabolism. Multiple phenomena captured by CBPLNs at the process level such as regulation, downstream effects, and feedback loops have well described counterparts at the gene and protein level. CBPLNs reveal high-level linkages between pathways and processes, making the identification of important biological trends more tractable than through interactions between individual genes and molecules alone. Our approach may provide a new route to explore, analyze, and understand cellular responses to internal and external cues within the context of the intricate networks of molecular interactions that control cellular behavior

    A Comparative Study of Genome-Wide Transcriptional Profiles of Primary Hepatocytes in Collagen Sandwich and Monolayer Cultures

    No full text
    Two commonly used culture systems in hepatic tissue engineering are the collagen sandwich (CS) and monolayers of cells. In this study, genome-wide gene expression profiles of primary hepatocytes were measured over an 8-day period for each cell culture system using Affymetrix GeneChips and compared via gene set enrichment analysis to elicit biologically meaningful information at the level of gene sets. Our results demonstrate that gene expression in hepatocytes in CS cultures steadily and comprehensively diverges from that in monolayer cultures. Gene sets up-regulated in CS cultures include several associated with liver metabolic and synthesis functions, such as metabolism of lipids, amino acids, carbohydrates, and alcohol, and synthesis of bile acids. Monooxygenases such as Cytochrome-P450 enzymes do not show any change between the culture systems after 1 day, but exhibit significant up-regulation in CS cultures after 3 days in comparison to hepatocyte monolayers. These data provide insights into the up- and down-regulation of several liver-critical gene sets and their subsequent effects on liver-specific functions. These results provide a baseline for further explorations into the systems biology of engineered liver mimics

    Bernard Herrmann

    No full text
    corecore