3,221 research outputs found

    Demonstration of high sensitivity laser ranging system

    Get PDF
    We report on a high sensitivity semiconductor laser ranging system developed for the Gravity and Magnetic Earth Surveyor (GAMES) for measuring variations in the planet's gravity field. The GAMES laser ranging instrument (LRI) consists of a pair of co-orbiting satellites, one which contains the laser transmitter and receiver and one with a passive retro-reflector mounted in an drag-stabilized housing. The LRI will range up to 200 km in space to the retro-reflector satellite. As the spacecraft pair pass over the spatial variations in the gravity field, they experience along-track accelerations which change their relative velocity. These time displaced velocity changes are sensed by the LRI with a resolution of 20-50 microns/sec. In addition, the pair may at any given time be drifting together or apart at a rate of up to 1 m/sec, introducing a Doppler shift into the ranging signals. An AlGaAs laser transmitter intensity modulated at 2 GHz and 10 MHz is used as fine and medium ranging channels. Range is measured by comparing phase difference between the transmit and received signals at each frequency. A separate laser modulated with a digital code, not reported in this paper, will be used for coarse ranging to unambiguously determine the distance up to 200 km

    Understanding and responding to danger from climate change: the role of key risks in the IPCC AR5

    Get PDF
    The IPCC’s Fifth Assessment Report (AR5) identifies key risks in a changing climate to inform judgments about danger from climate change and to empower responses. In this article, we introduce the innovations and implications of its approach, which extends analysis across sectors and regions, and consider relevance for future research and assessment. Across key risks in the AR5, we analyze the changing risk levels and potential for risk reduction over the next few decades, an era with some further committed warming, and in the second half of the 21st century and beyond, a longer-term era of climate options determined by the ambition of global mitigation. The key risk assessment underpins the IPCC’s conclusion that increasing magnitudes of warming increase the likelihood of severe, pervasive, and irreversible impacts. Here, we emphasize central challenges in understanding and communicating risks. These features include the importance of complex interactions in shaping risks, the need for rigorous expert judgment in evaluating risks, and the centrality of values, perceptions, and goals in determining both risks and responses

    Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation: Special Report of the Intergovernmental Panel on Climate Change

    Get PDF
    This Special Report on Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation (SREX) has been jointly coordinated by Working Groups I (WGI) and II (WGII) of the Intergovernmental Panel on Climate Change (IPCC). The report focuses on the relationship between climate change and extreme weather and climate events, the impacts of such events, and the strategies to manage the associated risks. The IPCC was jointly established in 1988 by the World Meteorological Organization (WMO) and the United Nations Environment Programme (UNEP), in particular to assess in a comprehensive, objective, and transparent manner all the relevant scientific, technical, and socioeconomic information to contribute in understanding the scientific basis of risk of human-induced climate change, the potential impacts, and the adaptation and mitigation options. Beginning in 1990, the IPCC has produced a series of Assessment Reports, Special Reports, Technical Papers, methodologies, and other key documents which have since become the standard references for policymakers and scientists.This Special Report, in particular, contributes to frame the challenge of dealing with extreme weather and climate events as an issue in decisionmaking under uncertainty, analyzing response in the context of risk management. The report consists of nine chapters, covering risk management; observed and projected changes in extreme weather and climate events; exposure and vulnerability to as well as losses resulting from such events; adaptation options from the local to the international scale; the role of sustainable development in modulating risks; and insights from specific case studies

    Temporal order of RNase IIIb and loss-of-function mutations during development determines phenotype in DICER1 syndrome: a unique variant of the two-hit tumor suppression model [v1; ref status: approved with reservations 1, http://f1000r.es/5l9]

    Get PDF
    Pleuropulmonary blastoma (PPB) is the most frequent pediatric lung tumor and often the first indication of a pleiotropic cancer predisposition, DICER1 syndrome, comprising a range of other individually rare, benign and malignant tumors of childhood and early adulthood. The genetics of DICER1-associated tumorigenesis are unusual in that tumors typically bear neomorphic missense mutations at one of five specific “hotspot” codons within the RNase IIIb domain of DICER 1, combined with complete loss of function (LOF) in the other allele. We analyzed a cohort of 124 PPB children for predisposing DICER1 mutations and sought correlations with clinical phenotypes. Over 70% have inherited or de novo germline LOF mutations, most of which truncate the DICER1 open reading frame. We identified a minority of patients who have no germline mutation, but are instead mosaic for predisposing DICER1 mutations. Mosaicism for RNase IIIb domain hotspot mutations defines a special category of DICER1 syndrome patients, clinically distinguished from those with germline or mosaic LOF mutations by earlier onsets and numerous discrete foci of neoplastic disease involving multiple syndromic organ sites. A final category of patients lack predisposing germline or mosaic mutations and have disease limited to a single PPB tumor bearing tumor-specific RNase IIIb and LOF mutations. We propose that acquisition of a neomorphic RNase IIIb domain mutation is the rate limiting event in DICER1-associated tumorigenesis, and that distinct clinical phenotypes associated with mutational categories reflect the temporal order in which LOF and RNase IIIb domain mutations are acquired during development

    Impaired DNA replication within progenitor cell pools promotes leukemogenesis.

    Get PDF
    Impaired cell cycle progression can be paradoxically associated with increased rates of malignancies. Using retroviral transduction of bone marrow progenitors followed by transplantation into mice, we demonstrate that inhibition of hematopoietic progenitor cell proliferation impairs competition, promoting the expansion of progenitors that acquire oncogenic mutations which restore cell cycle progression. Conditions that impair DNA replication dramatically enhance the proliferative advantage provided by the expression of Bcr-Abl or mutant p53, which provide no apparent competitive advantage under conditions of healthy replication. Furthermore, for the Bcr-Abl oncogene the competitive advantage in contexts of impaired DNA replication dramatically increases leukemogenesis. Impaired replication within hematopoietic progenitor cell pools can select for oncogenic events and thereby promote leukemia, demonstrating the importance of replicative competence in the prevention of tumorigenesis. The demonstration that replication-impaired, poorly competitive progenitor cell pools can promote tumorigenesis provides a new rationale for links between tumorigenesis and common human conditions of impaired DNA replication such as dietary folate deficiency, chemotherapeutics targeting dNTP synthesis, and polymorphisms in genes important for DNA metabolism

    Climate change 2014 : impacts, adaptation, and vulnerability

    Get PDF
    Current and future climate-related drivers of risk for small islands during the 21st century include sea level rise (SLR), tropical and extratropical cyclones, increasing air and sea surface temperatures, and changing rainfall patterns (high confidence; robust evidence, high agreement). Current impacts associated with these changes confirm findings reported on small islands from the Fourth Assessment Report (AR4) and previous IPCC assessments. The future risks associated with these drivers include loss of adaptive capacity and ecosystem services critical to lives and livelihoods in small islands.peer-reviewe

    A Sedimentological Record of Early Miocene Ice Advance and Retreat, AND-2A drill hole, McMurdo Sound, Antarctica

    Get PDF
    The lowest 501 m (∼1139–638 m) of the AND-2A core from southern McMurdo Sound is the most detailed and complete record of early Miocene sediments in Antarctica and indicates substantial variability in Antarctic ice sheet activity during early Miocene time. There are two main pulses of diamictite accumulation recorded in the core, and three significant intervals with almost no coarse clasts. Each diamictite package comprises several sequences consistent with ice advance-retreat episodes. The oldest phase of diamictite deposition, Composite Sequence 1 (CS1), has evidence for grounded ice at the drill site and has been dated around 20.2–20.1 Ma. It likely coincides with cooling associated with isotope event Mi1aa. This is overlain by a diamictite-free, sandstone-dominated interval, CS2 that includes three coarsening-upward deltaic cycles, is inferred to mark substantial warming, and has an inferred age range between 20.1 and 20.05 Ma. Above this is an interval with variable amounts of diamictite (CS3), with indicators of ice grounding, that is inferred to record ice advance relative to CS2, and is overlain by an ∼100-m-thick mud-rich interval (CS4) with no sedimentological evidence for direct glacial influence at the drill site (ca. 19.4–18.7 Ma). A third overlying diamictite-rich interval (CS5) overlies an unconformity spanning 18.7–17.8 Ma (coinciding with isotope event Mi1b), and records a return to more ice-influenced conditions at the drill site in late early Miocene time. The overall picture for the early Miocene (spanning the period 20.2–17.35 Ma) is one of ice advance alternating with periods of ice retreat and hence significant global climate fluctuations after the permanent establishment of the Antarctic ice sheet at the Eocene/Oligocene boundary, and preceding the relative warmth of the middle Miocene climatic optimum (ca. 17.5–14.5 Ma). Sedimentary cyclicity in CS1 and CS2 is consistent with ∼21 k.y. precession but in CS3 the frequency is closer to 100 k.y. (consistent with eccentricity), with a possible change to 20 k.y. precession in CS4. CS5 cyclicity is consistent with obliquity forcing. Provenance data are consistent with local Transantarctic Mountains glacial activity under precessional control in CS1 and more southerly ice-cap build up under 100 k.y. eccentricity and obliquity control during CS3 and CS5, respectively
    corecore