58 research outputs found

    Assertiones Jvridico-Politicae. De Jvre Venandi

    Get PDF

    Nuclear coherent population transfer with x-ray laser pulses

    Get PDF
    Coherent population transfer between nuclear states using x-ray laser pulses is studied. The laser pulses drive two nuclear transitions between three nuclear states in a setup reminding of stimulated Raman adiabatic passage used for atomic coherent population transfer. To compensate for the lack of Îł\gamma-ray laser sources, we envisage accelerated nuclei interacting with two copropagating or crossed x-ray laser pulses. The parameter regime for nuclear coherent population transfer using fully coherent light generated by future X-Ray Free-Electron Laser facilities and moderate or strong acceleration of nuclei is determined. We find that the most promising case requires laser intensities of 101710^{17}-101910^{19} W/cm2^{2} for complete nuclear population transfer. As relevant application, the controlled pumping or release of energy stored in long-lived nuclear states is discussed.Comment: extended argument about experimental feasibility, added references, results unchanged; v3 updated to the published versio

    Therapeutic Reference Range for Aripiprazole in Schizophrenia Revised: a Systematic Review and Metaanalysis

    Full text link
    Rationale: While one of the basic axioms of pharmacology postulates that there is a relationship between the concentration and effects of a drug, the value of measuring blood levels is questioned by many clinicians. This is due to the often-missing validation of therapeutic reference ranges. Objectives: Here, we present a prototypical meta-analysis of the relationships between blood levels of aripiprazole, its target engagement in the human brain, and clinical effects and side effects in patients with schizophrenia and related disorders. Methods: The relevant literature was systematically searched and reviewed for aripiprazole oral and injectable formulations. Population-based concentration ranges were computed (N = 3,373) and pharmacokinetic influences investigated. Results: Fifty-three study cohorts met the eligibility criteria. Twenty-nine studies report blood level after oral, 15 after injectable formulations, and nine were positron emission tomography studies. Conflicting evidence for a relationship between concentration, efficacy, and side effects exists (assigned level of evidence low, C; and absent, D). Population-based reference ranges are well in-line with findings from neuroimaging data and individual efficacy studies. We suggest a therapeutic reference range of 120-270 ng/ml and 180-380 ng/ml, respectively, for aripiprazole and its active moiety for the treatment of schizophrenia and related disorders. Conclusions: High interindividual variability and the influence of CYP2D6 genotypes gives a special indication for Therapeutic Drug Monitoring of oral and long-acting aripiprazole. A starting dose of 10 mg will in most patients result in effective concentrations in blood and brain. 5 mg will be sufficient for known poor metabolizers

    Crowdfunding, Efficiency, and Inequality

    Get PDF
    We show how decentralized individual investments can efficiently allocate capital to innovating firms via equity crowdfunding. We develop a model where consumers have privately known consumption preferences and may act as investors. Consumers identify worthwhile investments based on their own preferences and invest in firms whose product they like. In the presence of aggregate demand uncertainty, an efficient capital allocation is achieved if all groups of consumers have enough liquidity to invest. If some groups of consumers cannot invest, capital flows reflect preferences of liquid investors but not future demand. Comparing with traditional financing forms, crowdfunding in the absence of liquidity constraints can be superior unless traditional financiers are fully competitive and perfectly informed

    Oblique Angle Deposition of Thin Films – Theory, Modelling, and Application

    Get PDF
    With the aim to gain a deeper understanding of the role of the angle of incidence in physical vapor deposition, experimental, and computer-based studies were conducted. Electron beam evaporation and ion beam sputtering were used as deposition methods. The materials germanium, silicon, and molybdenum were deposited at different incidence angle, different temperatures and varied residual gas atmospheres. Established models could not be used to adequately explain the obtained relations between morphological parameters, as the tilt angle, with the incidence angle. To investigate the interplay of self-shadowing and competitive growth, an on-lattice simulation was developed. Care was taken to avoid any artificial anisotropy. Comparison with an, additionally developed, off-lattice simulation was used to verify this. Based on the made observations, an analytical model was deduced that combines the material properties and the deposition conditions into a single parameter. The predictions of this model were verified for the experimental observations, the results of the computer simulations, and on literature data. In the last part of the thesis, methods are shown that facilitate to modify the properties of the obliquely deposited thin films to fit requirements of various applications. This includes in situ doping of silicon nanostructures, creation of core-shell structures, as well as biochemical surface functionalization of silver nanostructures. On the example of the latter, various bio-sensing applications are presented.:1 MOTIVATION 7 2 BASIC CONCEPTS 9 2.1 Physical vapor deposition (PVD) 9 2.2 Deposition at oblique angles 14 2.3 Controlling the thin film morphology 16 3 EXPERIMENTAL METHODS 19 3.1 Sample preparation 19 3.2 Characterization techniques 32 4 EXPERIMENTAL RESULTS 37 4.1 Columnar structure and evolutionary selection 37 4.2 Tilt angles and density 42 4.3 Fan angles 45 4.4 Relevance of beam divergence 47 4.5 Summary 50 5 SIMULATION 53 5.1 Introduction 53 5.2 Off-lattice approach 54 5.3 On-lattice approach 59 5.4 Further applications of the on-lattice simulation 64 5.5 Other aspects 72 5.6 Summary 76 6 OBLIQUE ANGLE DEPOSITION MODEL 77 6.1 Semi-Empirical models 77 6.2 Tanto’s fan model 78 6.3 Development of the Competition Model 80 6.4 Verification of the model 84 6.5 Summary 89 7 FILM OPTIMIZATION FOR APPLICATIONS 91 7.1 Boron doped Si nanostructures 91 7.2 Surface functionalization for biosensors 95 7.3 Core-shell structures by pulsed electrodeposition 101 7.4 Summary 105 8 SUMMARY 107 9 BIBLIOGRAPHY 109 10 LIST OF ABBREVIATIONS 121 11 ACKNOWLEDGEMENTS 123 APPENDIX 125 PUBLICATION LIST 131 SELBSTSTÄNDIGKEITSERKLÄRUNG 133Mit dem Ziel ein besseres Verständnis des Einflusses des Einfallswinkels in der physikalischen Gasphasenabscheidung zu erreichen, wurden experimentell realisierte und am Computer simulierte Dünnschichten untersucht. Als Abscheidetechniken kamen sowohl Elektronenstrahl-Verdampfen als auch Ionenstrahl-Zerstäubung zum Einsatz. Es wurden die Materialien Germanium, Silicium und Molybdän verwendet, die bei verschiedenen Einfallswinkeln, verschiedenen Substrattemperaturen und variiertem Restgas abgeschieden wurden. Die beobachteten Zusammenhänge, von bspw. kolumnarer Verkippung und Einfallswinkel, konnten nicht mit den etablierten Modellen in Einklang gebracht werden. Um das genaue Zusammenspiel von Abschattung und Konkurrenz-Wachstum zu verstehen, wurde eine „on-lattice“ Computersimulation entwickelt, mit dem besonderen Augenmerk auf die Vermeidung von gitterbasierten Anisotropien. Dies wurde durch Vergleich mit einer, ebenfalls entwickelten, „off-lattice“ Simulation sichergestellt. Ausgehend von den beobachteten Effekten konnte ein analytisches Modell entwickelt werden, welches die Materialeigenschaften und Abscheidebedingungen in einen einzigen Parameter vereint. Die Vorhersagen des Modells wurden an den hergestellten Schichten, den Computersimulationen und an Literaturdaten verifiziert. Abschließend werden Methoden aufgezeigt, die schräg abgeschiedenen nanostrukturierten Schichten verschiedenen Anwendungen anzupassen. Dies umfasst die in situ Dotierung von Siliciumnanostrukturen, die Erzeugung von Kern-Schale-Strukturen, sowie die biochemische Oberflächenfunktionalisierung von Silbernanostrukturen. Am Beispiel der letztgenannten werden verschiedene Anwendungen in der Biosensorik detaillierter vorgestellt.:1 MOTIVATION 7 2 BASIC CONCEPTS 9 2.1 Physical vapor deposition (PVD) 9 2.2 Deposition at oblique angles 14 2.3 Controlling the thin film morphology 16 3 EXPERIMENTAL METHODS 19 3.1 Sample preparation 19 3.2 Characterization techniques 32 4 EXPERIMENTAL RESULTS 37 4.1 Columnar structure and evolutionary selection 37 4.2 Tilt angles and density 42 4.3 Fan angles 45 4.4 Relevance of beam divergence 47 4.5 Summary 50 5 SIMULATION 53 5.1 Introduction 53 5.2 Off-lattice approach 54 5.3 On-lattice approach 59 5.4 Further applications of the on-lattice simulation 64 5.5 Other aspects 72 5.6 Summary 76 6 OBLIQUE ANGLE DEPOSITION MODEL 77 6.1 Semi-Empirical models 77 6.2 Tanto’s fan model 78 6.3 Development of the Competition Model 80 6.4 Verification of the model 84 6.5 Summary 89 7 FILM OPTIMIZATION FOR APPLICATIONS 91 7.1 Boron doped Si nanostructures 91 7.2 Surface functionalization for biosensors 95 7.3 Core-shell structures by pulsed electrodeposition 101 7.4 Summary 105 8 SUMMARY 107 9 BIBLIOGRAPHY 109 10 LIST OF ABBREVIATIONS 121 11 ACKNOWLEDGEMENTS 123 APPENDIX 125 PUBLICATION LIST 131 SELBSTSTÄNDIGKEITSERKLÄRUNG 13

    Oblique Angle Deposition of Thin Films – Theory, Modelling, and Application

    No full text
    With the aim to gain a deeper understanding of the role of the angle of incidence in physical vapor deposition, experimental, and computer-based studies were conducted. Electron beam evaporation and ion beam sputtering were used as deposition methods. The materials germanium, silicon, and molybdenum were deposited at different incidence angle, different temperatures and varied residual gas atmospheres. Established models could not be used to adequately explain the obtained relations between morphological parameters, as the tilt angle, with the incidence angle. To investigate the interplay of self-shadowing and competitive growth, an on-lattice simulation was developed. Care was taken to avoid any artificial anisotropy. Comparison with an, additionally developed, off-lattice simulation was used to verify this. Based on the made observations, an analytical model was deduced that combines the material properties and the deposition conditions into a single parameter. The predictions of this model were verified for the experimental observations, the results of the computer simulations, and on literature data. In the last part of the thesis, methods are shown that facilitate to modify the properties of the obliquely deposited thin films to fit requirements of various applications. This includes in situ doping of silicon nanostructures, creation of core-shell structures, as well as biochemical surface functionalization of silver nanostructures. On the example of the latter, various bio-sensing applications are presented.:1 MOTIVATION 7 2 BASIC CONCEPTS 9 2.1 Physical vapor deposition (PVD) 9 2.2 Deposition at oblique angles 14 2.3 Controlling the thin film morphology 16 3 EXPERIMENTAL METHODS 19 3.1 Sample preparation 19 3.2 Characterization techniques 32 4 EXPERIMENTAL RESULTS 37 4.1 Columnar structure and evolutionary selection 37 4.2 Tilt angles and density 42 4.3 Fan angles 45 4.4 Relevance of beam divergence 47 4.5 Summary 50 5 SIMULATION 53 5.1 Introduction 53 5.2 Off-lattice approach 54 5.3 On-lattice approach 59 5.4 Further applications of the on-lattice simulation 64 5.5 Other aspects 72 5.6 Summary 76 6 OBLIQUE ANGLE DEPOSITION MODEL 77 6.1 Semi-Empirical models 77 6.2 Tanto’s fan model 78 6.3 Development of the Competition Model 80 6.4 Verification of the model 84 6.5 Summary 89 7 FILM OPTIMIZATION FOR APPLICATIONS 91 7.1 Boron doped Si nanostructures 91 7.2 Surface functionalization for biosensors 95 7.3 Core-shell structures by pulsed electrodeposition 101 7.4 Summary 105 8 SUMMARY 107 9 BIBLIOGRAPHY 109 10 LIST OF ABBREVIATIONS 121 11 ACKNOWLEDGEMENTS 123 APPENDIX 125 PUBLICATION LIST 131 SELBSTSTÄNDIGKEITSERKLÄRUNG 133Mit dem Ziel ein besseres Verständnis des Einflusses des Einfallswinkels in der physikalischen Gasphasenabscheidung zu erreichen, wurden experimentell realisierte und am Computer simulierte Dünnschichten untersucht. Als Abscheidetechniken kamen sowohl Elektronenstrahl-Verdampfen als auch Ionenstrahl-Zerstäubung zum Einsatz. Es wurden die Materialien Germanium, Silicium und Molybdän verwendet, die bei verschiedenen Einfallswinkeln, verschiedenen Substrattemperaturen und variiertem Restgas abgeschieden wurden. Die beobachteten Zusammenhänge, von bspw. kolumnarer Verkippung und Einfallswinkel, konnten nicht mit den etablierten Modellen in Einklang gebracht werden. Um das genaue Zusammenspiel von Abschattung und Konkurrenz-Wachstum zu verstehen, wurde eine „on-lattice“ Computersimulation entwickelt, mit dem besonderen Augenmerk auf die Vermeidung von gitterbasierten Anisotropien. Dies wurde durch Vergleich mit einer, ebenfalls entwickelten, „off-lattice“ Simulation sichergestellt. Ausgehend von den beobachteten Effekten konnte ein analytisches Modell entwickelt werden, welches die Materialeigenschaften und Abscheidebedingungen in einen einzigen Parameter vereint. Die Vorhersagen des Modells wurden an den hergestellten Schichten, den Computersimulationen und an Literaturdaten verifiziert. Abschließend werden Methoden aufgezeigt, die schräg abgeschiedenen nanostrukturierten Schichten verschiedenen Anwendungen anzupassen. Dies umfasst die in situ Dotierung von Siliciumnanostrukturen, die Erzeugung von Kern-Schale-Strukturen, sowie die biochemische Oberflächenfunktionalisierung von Silbernanostrukturen. Am Beispiel der letztgenannten werden verschiedene Anwendungen in der Biosensorik detaillierter vorgestellt.:1 MOTIVATION 7 2 BASIC CONCEPTS 9 2.1 Physical vapor deposition (PVD) 9 2.2 Deposition at oblique angles 14 2.3 Controlling the thin film morphology 16 3 EXPERIMENTAL METHODS 19 3.1 Sample preparation 19 3.2 Characterization techniques 32 4 EXPERIMENTAL RESULTS 37 4.1 Columnar structure and evolutionary selection 37 4.2 Tilt angles and density 42 4.3 Fan angles 45 4.4 Relevance of beam divergence 47 4.5 Summary 50 5 SIMULATION 53 5.1 Introduction 53 5.2 Off-lattice approach 54 5.3 On-lattice approach 59 5.4 Further applications of the on-lattice simulation 64 5.5 Other aspects 72 5.6 Summary 76 6 OBLIQUE ANGLE DEPOSITION MODEL 77 6.1 Semi-Empirical models 77 6.2 Tanto’s fan model 78 6.3 Development of the Competition Model 80 6.4 Verification of the model 84 6.5 Summary 89 7 FILM OPTIMIZATION FOR APPLICATIONS 91 7.1 Boron doped Si nanostructures 91 7.2 Surface functionalization for biosensors 95 7.3 Core-shell structures by pulsed electrodeposition 101 7.4 Summary 105 8 SUMMARY 107 9 BIBLIOGRAPHY 109 10 LIST OF ABBREVIATIONS 121 11 ACKNOWLEDGEMENTS 123 APPENDIX 125 PUBLICATION LIST 131 SELBSTSTÄNDIGKEITSERKLÄRUNG 13
    • …
    corecore