38 research outputs found

    Macrofaunal assemblages associated with the sponge Sarcotragus foetidus Schmidt, 1862 (Porifera: Demospongiae) at the coasts of Cyprus and Greece

    Get PDF
    Background: This paper describes a dataset of macrofaunal organisms associated with the sponge Sarcotragus foetidus Schmidt, 1862, collected by scuba diving from two sampling sites: one in Greece (North Aegean Sea) and one in Cyprus (Levantine Sea). New information: This dataset includes macrofaunal taxa inhabiting the demosponge Sarcotragus foetidus and contributes to the ongoing efforts of the Ocean Biogeographic Information System (OBIS) which aims at filling the gaps in our current knowledge of the world's oceans. This is the first paper, to our knowledge, where the macrofauna associated with S. foetidus from the Levantine Basin is being recorded. In total, 90 taxa were recorded, from which 83 were identified to the species level. Eight of these species are new records for the Levantine Basin. The dataset contains 213 occurrence records, fully annotated with all required metadata. It is accessible at http://lifewww-00.her.hcmr.gr:8080/medobis/resource.do?r=organismic_assemblages_sarcotragus_foetidus_cyprus_greec

    Unexpected high abyssal ophiuroid diversity in polymetallic nodule fields of the Northeast Pacific Ocean, and implications for conservation

    Get PDF
    The largest and commercially appealing mineral deposits can be found in the abyssal seafloor of the Clarion-Clipperton Zone (CCZ), a polymetallic nodule province, in the NE Pacific Ocean, where experimental mining is due to take place. In anticipation of deep-sea mining impacts, it has become essential to rapidly and accurately assess biodiversity. For this reason, ophiuroid material collected during seven scientific cruises from five exploration license areas within CCZ, one area protected from mining (APEI3, Area of Particular Environmental Interest) in the periphery of CCZ and the DIS-turbance and re-COLonisation (DISCOL) Experimental Area (DEA), in the SE Pacific Ocean, was examined. Specimens were genetically analysed using a fragment of the mitochondrial cytochrome c oxidase subunit I (COI). Maximum Likelihood and Neighbour Joining trees were constructed, while four tree-based and distance-based methods of species delineation (ABGD, BINs, GMYC, mPTP) were employed to propose Secondary Species Hypotheses (SSHs) within the ophiuroids collected. The species delimitations analyses concordant results revealed the presence of 43 deep-sea brittle stars SSHs, revealing an unexpectedly high diversity and showing that the most conspicuous invertebrates in abyssal plains have been so far considerably under-estimated. The number of SSHs found in each area varied from 5 (IFREMER area) to 24 (BGR area), while 13 SSHs were represented by singletons. None of the SSHs was found to be present in all 7 areas, while the majority of species (44.2 %) had a single-area presence (19 SSHs). The most common species were Ophioleucidae sp. (Species 29), Amphioplus daleus (Species 2) and Ophiosphalma glabrum (Species 3), present in all areas except APEI3. The biodiversity patterns could be mainly attributed to POC fluxes that could explain the highest species numbers found in BGR (German contractor area) and UKSRL (UK contractor area) areas. The five exploration contract areas belong to a mesotrophic province, while in contrary the APEI3 is located in an oligotrophic province which could explain the lowest diversity as well as very low similarity with the other six study areas. Based on these results the representativeness and the appropriateness of APEI3 to meet its purpose of preserving the biodiversity of the CCZ fauna are questioned. Finally, this study provides the foundation for biogeographic and functional analyses that will provide insight into the drivers of species diversity and its role in ecosystem function

    Unexpected high abyssal ophiuroid diversity in polymetallic nodule fields of the Northeast Pacific Ocean, and implications for conservation

    Get PDF
    The largest and commercially appealing mineral deposits can be found in the abyssal seafloor of the Clarion-Clipperton Zone (CCZ), a polymetallic nodule province, in the NE Pacific Ocean, where experimental mining is due to take place. In anticipation of deep-sea mining impacts, it has become essential to rapidly and accurately assess biodiversity. For this reason, ophiuroid material collected during seven scientific cruises from five exploration license areas within CCZ, one area protected from mining (APEI3, Area of Particular Environmental Interest) in the periphery of CCZ and the DIS-turbance and re-COLonisation (DISCOL) Experimental Area (DEA), in the SE Pacific Ocean, was examined. Specimens were genetically analysed using a fragment of the mitochondrial cytochrome c oxidase subunit I (COI). Maximum Likelihood and Neighbour Joining trees were constructed, while four tree-based and distance-based methods of species delineation (ABGD, BINs, GMYC, mPTP) were employed to propose Secondary Species Hypotheses (SSHs) within the ophiuroids collected. The species delimitations analyses concordant results revealed the presence of 43 deep-sea brittle stars SSHs, revealing an unexpectedly high diversity and showing that the most conspicuous invertebrates in abyssal plains have been so far considerably under-estimated. The number of SSHs found in each area varied from 5 (IFREMER area) to 24 (BGR area), while 13 SSHs were represented by singletons. None of the SSHs was found to be present in all 7 areas, while the majority of species (44.2 %) had a single-area presence (19 SSHs). The most common species were Ophioleucidae sp. (Species 29), Amphioplus daleus (Species 2) and Ophiosphalma glabrum (Species 3), present in all areas except APEI3. The biodiversity patterns could be mainly attributed to POC fluxes that could explain the highest species numbers found in BGR (German contractor area) and UKSRL (UK contractor area) areas. The five exploration contract areas belong to a mesotrophic province, while in contrary the APEI3 is located in an oligotrophic province which could explain the lowest diversity as well as very low similarity with the other six study areas. Based on these results the representativeness and the appropriateness of APEI3 to meet its purpose of preserving the biodiversity of the CCZ fauna are questioned. Finally, this study provides the foundation for biogeographic and functional analyses that will provide insight into the drivers of species diversity and its role in ecosystem function

    Investigation of the taxonomy, zoogeography and phylogeny of the shrimps of the genus Atyaephyra, in the circum-mediterranean freshwaters

    No full text
    The family Atyidae includes 43 extant genera, with most of its genera and species having limited distributions. Seven atyid genera are found in the freshwater habitats of the wider Mediterranean region (Atyaephyra, Caridina, Dugastella, Gallocaris, Troglocaris, Puteonator, Typhlatya). While most of the above genera have limited distributions, the genus Atyaephyra shows a wide distribution in the circum-Mediterranean region spanning from the Middle East, to northwestern Africa, the greater part of southern Europe and to some Mediterranean islands (Corsica, Sardinia, Sicily). Although the genus Atyaephyra was first reported in the circum-Mediterranean region 200 years ago it continues to have a very confusing taxonomic history. The main reasons for this complicated history of the genus Atyaephyra, is its great intrapopulation and interpopulation variability presented, as well as the lack of a series of samples covering the distribution range of the genus.This specific research was designed and conducted according to the following hypothesis, formed in a previous study, «it is very likely that more taxa should be included in this wide distributed endemic genus».The aim of this PhD thesis was to investigate the taxonomic status of the endemic Mediterranean genus Atyaephyra, throughout its geographical distribution. Specific targets were: (1) the recognition and identification of any new species within the genus Atyaephyra, the validation or not of already described taxa and the possible verification of the results of morphology with genetic methods, (2) the description of the distribution range of the species identified and their phylogenetic relationships, in relation to the palaeogeographic history of the circum-Mediterranean areas.For this purpose, combined information derived from both morphological and the genetic examination of Atyaephyra samples was acquired.Samples were obtained from a total of 176 different locations found in 139 rivers, lakes, reservoirs from 22 different countries in the wider Mediterranean region. Sampling was conducted in such a way as to cover the study area, the broader Mediterranean region, the best way possible, so that the intrapopulation and interpopulation morphological and genetic variability of Atyaephyra is represented. Morphological analysis included a comparative examination of 1389 individuals, while in total 137 different morphological characters were examined (70 somatometric, 48 meristic and 19 qualitative characters).For the genetic analyses two genetic markers were used, one mitochondrial (COI) and one nuclear (28SrRNA). Three phylogenetic analyses, Bayesian Inference, Maximum Likelihood and Neighbor Joining were implemented, while divergence times of the phylogenetic clades were estimated using geological data reported in related to Atyaephyra genera. The detailed analysis of the morphological characters and the genetic data from the study of these two genes (COI, 28S) revealed the existence of seven species inside the endemic circum-Mediterranean genus Atyaephyra. Of these seven species, four species are described as new to science (A. acheronensis, A. strymonensis, A. thyamisensis, A. tuerkayi), of which two are cryptic (A. acheronensis, A. tuerkayi), and can only be identified using genetic characteristics. Two other species (A. stankoi and A. orientalis) were described in detail for the first time.Additionally, a dichotomous key was created with the use of several selected morphological characters and the geographical distribution of the species, based on which the seven species of the genus can be separated. The unique genetic characters, the genetic distances of each species in relation to the other species of the genus, the monophyly characterizing each species and finally the unique haplotypes found in each species, support the recognition of these seven distinct species.Regarding the genetic diversification among the seven species, A. tuerkayi and A. orientalis appear to be the most diversified species of the genus. The Greek species appears to be intermediate diversified, with A. thyamisensis being the most diverse of the three. Finally, the less differentiated compared to the other species, it seems to be the species A. desmarestii and A. acheronensis.Furthermore, the geographical distribution of each species is defined and described. The species A. desmarestii has been reported from various freshwater systems of Europe and northwest Africa. In contrary, A. acheronensis displays a fragmented distribution spanning from Slovenia to the southwest Greece. The distribution of A. thyamisensis seems to be limited to a few rivers in western mainland of Greece and the islands of Corfu and Lefkada. The species A. stankoi has a relatively wide distribution in Greece, which extends up the southern part of FYROM. The species A. strymonensis displays a very limited distribution including only the rivers Strymonas and Nestos. The species A. orientalis shows a wide distribution from Turkey to Iran and finally A. tuerkayi is found only in the river Nahr Al-Kabir in Syria.According to the phylogenetic analyses, all the phylogenetic trees generated are characterized by the appearance of corresponding monophyletic clades and subclades, which represent distinct species according to morphology or/and distinct geographical areas. Specifically, four main phylogenetic clades are being recognized. The first clade includes sequences from the Middle East that correspond to the morphologically well distinct species A. orientalis. The second clade includes sequences from Syria and corresponds to the morphologically indistinguishable (cryptic) species A. tuerkayi. The third clade includes three well distinct morphological species from Greece, A. strymonensis, A. thyamisensis and A. stankoi. This clade is further divided into three monophyletic subclades, each of which corresponds to one of the above mentioned three species. The fourth clade includes sequences from Western Europe, northwest Africa and the Balkan Peninsula. This clade is also separated into two monophyletic subclades, according to the consensus analysis and includes the cryptic species A. acheronensis and A. desmarestii. In all the analyses, the genus Atayephyra appears as monophyletic.Finally, the complicated palaeogeography of the Mediterranean probably was the catalyst for the formation of the present biogeographic pattern of the genus Atyaephyra. A phylogeographic scenario of an old origin of the genus seems more likely with an initial settlement in the Mediterranean region, between the late Eocene and early Oligocene Epoch. The ancestor of Atyaephyra seems to have followed a southern route from Asia to the Middle East and from there to southern Europe via the Balkan-Eastern-Iranian tectonic plate and subsequently dispersed throughout the wider Mediterranean region.Η οικογένεια Atyidae περιλαμβάνει 43 αρτίγονα γένη, με τα περισσότερα γένη και είδη να έχουν περιορισμένες εξαπλώσεις. Στα λιμναία και ποτάμια ενδιαιτήματα της ευρύτερης Μεσογειακής περιοχής συναντώνται 7 γένη (Atyaephyra, Caridina, Dugastella, Gallocaris, Troglocaris, Puteonator, Typhlatya) των Atyidae. Ενώ τα περισσότερα από τα παραπάνω γένη εμφανίζουν μια περιορισμένη εξάπλωση, τo Atyaephyra αντίθετα εμφανίζει μια ευρεία εξάπλωση στην περιμεσογειακή περιοχή, η οποία εκτείνεται από τη Μέση Ανατολή, στη βορειοδυτική Αφρική, στο μεγαλύτερο τμήμα της νότιας Ευρώπης και σε μερικά μεσογειακά νησιά (Κορσική, Σαρδηνία, Σικελία). Παρόλο που το γένος Atyaephyra αναφέρθηκε για πρώτη φορά από την περιμεσογειακή περιοχή πριν 200 χρόνια συνεχίζει να έχει μια αρκετά μπερδεμένη ταξινομική ιστορία. Κύριοι λόγοι για την τόσο περίπλοκη ιστορία του γένους Atyaephyra είναι η μεγάλη ενδοπληθυσμιακή και διαπληθυσμιακή ποικιλότητα που παρουσιάζεται, καθώς και η έλλειψη μιας πλήρους σειράς δειγμάτων από όλες τις περιοχές που το γένος αυτό συναντάται.Η παρούσα έρευνα σχεδιάστηκε και πραγματοποιήθηκε με βάση την υπόθεση, η οποία διαμορφώθηκε σε προηγούμενη σχετική έρευνα: «στο τόσο ευρείας γεωγραφικής εξάπλωσης, ενδημικό αυτό γένος, θα πρέπει να περιλαμβάνονται περισσότερα του ενός taxa (είδη)».Πιο συγκεκριμένα, στόχος αυτής της διδακτορικής διατριβής ήταν η διερεύνηση της συστηματικής κατάστασης του ενδημικού μεσογειακού γένους Atyaephyra, σε όλη την έκταση της γεωγραφικής εξάπλωσής του και ειδικότερα: (1) η αναγνώριση και ο προσδιορισμός τυχόν νέων ειδών μέσα στο γένος Atyaephyra, αλλά και η τεκμηρίωση των taxa που είχαν περιγραφεί ελλιπώς, και η επιβεβαίωση πιθανώς των αποτελεσμάτων με γενετικές τεχνικές, (2) ο προσδιορισμός της εξάπλωσης των taxa του γένους που θα προσδιορίζονταν και των μεταξύ τους φυλογενετικών συγγενειών, σε σχέση και με την παλαιογεωγραφική ιστορία των περιμεσογειακών γεωγραφικών περιοχών.Για το σκοπό αυτό χρησιμοποιήθηκε συνδυασμένη πληροφορία που προήλθε τόσο από τη μορφολογική εξέταση όσο και τη γενετική εξέταση δειγμάτων του γένους Atyaephyra.Συνολικά αποκτήθηκαν δείγματα από 176 διαφορετικές θέσεις που βρίσκονται σε 139 ποτάμια, λίμνες, φράγματα, πηγές από 22 διαφορετικές χώρες της ευρύτερης μεσογειακής περιοχής. Η επιλογή των δειγμάτων αυτών έγινε με τέτοιο τρόπο ώστε να καλυφτεί όσο το δυνατό καλύτερα η περιοχή μελέτης, δηλαδή η ευρύτερη Μεσογειακή περιοχή και συνεπώς να αντιπροσωπευτεί η ενδοπληθυσμιακή και η διαπληθυσμιακή μορφολογική και γενετική ποικιλότητα του Atyaephyra. Η μορφολογική ανάλυση περιλάμβανε τη συγκριτική εξέταση 1389 ατόμων, ενώ συνολικά εξετάστηκαν 137 διαφορετικά μορφολογικά χαρακτηριστικά (70 σωματομετρικά, 48 μεριστικά και 19 ποιοτικά χαρακτηριστικά). Για τις γενετικές αναλύσεις χρησιμοποιήθηκαν δύο γενετικοί δείκτες, ένας μιτοχονδριακός (COI) και ένας πυρηνικός (28SrRNA). Πραγματοποιήθηκαν τρεις μέθοδοι φυλογενετικής ανάλυσης, Ανάλυση κατά NJ, Ανάλυση Μέγιστης Πιθανοφάνειας και Ανάλυση κατά Bayes, ενώ εκτιμήθηκαν οι χρόνοι εξέλιξης των φυλογενετικών κλάδων με τη χρήση γεωλογικών δεδομένων που έχουν αναφερθεί για συγγενικά με το Atyaephyra γένη. Η λεπτομερής ανάλυση των μορφολογικών γνωρισμάτων, αλλά και των γενετικών δεδομένων από τη μελέτη των δύο γονιδίων (COI, 28S), αποκάλυψε την ύπαρξη επτά ειδών μέσα στο ενδημικό, περιμεσογειακό γένος Atyaephyra. Από αυτά, τα τέσσερα περιγράφονται ως νέα είδη για την επιστήμη (A. acheronensis, A. strymonensis, A. thyamisensis, A. tuerkayi), από τα οποία τα δύο είναι κρυπτικά (A. acheronensis, A. tuerkayi), δηλαδή μπορούν αναγνωριστούν μόνο με γενετικά χαρακτηριστικά. Για δύο άλλα είδη (A. stankoi και A. orientalis) δόθηκε για πρώτη φορά μια πλήρης λεπτομερής περιγραφή τους. Επίσης, με τη χρήση αρκετών επιλεγμένων γνωρισμάτων, αλλά και της γεωγραφικής εξάπλωσης τους, δημιουργήθηκε μια διχοτομική κλείδα, με βάση την οποία τα επτά είδη του γένους μπορούν να διαχωρίζονται μεταξύ τους. Τα μοναδικά γενετικά χαρακτηριστικά, οι γενετικές αποστάσεις του κάθε είδους σε σχέση με τα άλλα είδη του γένους, η μονοφυλετικότητα που χαρακτηρίζει το κάθε είδος και τέλος οι μοναδικοί απλότυποι που περιέχει το κάθε ένα είδος, συνηγορούν στην αναγνώριση των επτά αυτών διακριτών ειδών.Όσον αφορά στη γενετική ταυτοποίηση μεταξύ των επτά ειδών, το A. tuerkayi και το A. orientalis εμφανίζονται ως τα πιο διαφοροποιημένα είδη του γένους. Ακολουθούν τα ελληνικά είδη, με το A. thyamisensis να είναι το πιο διαφοροποιημένο από τα τρία. Τέλος, τα λιγότερο διαφοροποιημένα σε σχέση με τα υπόλοιπα είδη εμφανίζονται να είναι τα είδη A. desmarestii και A. acheronensis.Επιπρόσθετα, διακρίνεται και περιγράφεται η γεωγραφική εξάπλωσης του κάθε ενός είδους. Το είδος A. desmarestii έχει αναφερθεί από διάφορα υδάτινα συστήματα της Ευρώπης και της βορειοδυτικής Αφρικής. Το A. acheronensis εμφανίζει μια κατακερματισμένη εξάπλωση που εκτείνεται από τη Σλοβενία μέχρι και τη νοτιοδυτική Ελλάδα. Αντίθετα η εξάπλωση του A. thyamisensis φαίνεται να περιορίζεται σε μερικά μόνο ποτάμια της ηπειρωτικής δυτικής Ελλάδας, αλλά και στα νησιά Κέρκυρα και Λευκάδα. Το A. stankoi έχει μια σχετικά ευρεία εξάπλωση στην Ελλάδα η οποία εκτείνεται μέχρι και το νότιο τμήμα της Π.Δ.Γ.Μ. Το Α. strymonensis εμφανίζει μια πολύ περιορισμένη εξάπλωση που περιλαμβάνει μόνο τα ποτάμια Στρυμόνας και Νέστος. Το A. orientalis εμφανίζει μια ευρεία εξάπλωση από την Τουρκία μέχρι και το Ιράν και τέλος το A. tuerkayi, συναντάται μόνο στον ποταμό Nahr Al-Kabir της Συρίας.Σύμφωνα με τη φυλογενετική ανάλυση, όλα τα φυλογενετικά δένδρα που δημιουργήθηκαν, χαρακτηρίζονται από την εμφάνιση αντίστοιχων μονοφυλετικών κλάδων και υποκλάδων, οι οποίοι αντιπροσωπεύουν διακριτά είδη, με βάση τη μορφολογία ή/και διακριτές γεωγραφικές περιοχές. Συγκεκριμένα, διακρίνονται τέσσερις βασικοί φυλογενετικοί κλάδοι. Ο πρώτος κλάδος περιλαμβάνει αλληλουχίες από τη Μέση Ανατολή, που αντιστοιχούν στο μορφολογικά καλά διακριτό είδος Α. orientalis. Ο δεύτερος κλάδος περιλαμβάνει αλληλουχίες από τη Συρία και αντιστοιχεί στο μορφολογικά κρυπτικό είδος A. tuerkayi. Στον τρίτο κλάδο περιλαμβάνονται τα τρία καλά διακριτά μορφολογικά είδη από την Ελλάδα, A . strymonensis, A. thyamisensis και A. stankoi. Ο κλάδος αυτός διαχωρίζεται σε τρεις μονοφυλετικούς υποκλάδους, κάθε ένας από τους οποίους αντιστοιχεί σε ένα από τα παραπάνω τρία είδη. Ο τέταρτος κλάδος περιλαμβάνει αλληλουχίες από τη δυτική Ευρώπη, τη βορειοδυτική Αφρική και τη Βαλκανική Χερσόνησο. Ο κλάδος αυτός διαχωρίζεται επίσης σε δύο ακόμη μονοφυλετικούς υποκλάδους, σύμφωνα με τη συνδυαστική ανάλυση και περιλαμβάνει το κρυπτικό είδος A. acheronensis και το A. desmarestii. Σε όλες τις αναλύσεις, το γένος Atayephyra εμφανίζεται ως μονοφυλετικό.Τέλος, η πολύπλοκη παλαιογεωγραφία της Μεσογείου, πιθανότατα υπήρξε ο καταλυτικός παράγοντας για τη διαμόρφωση των σημερινών βιογεωγραφικών προτύπων και του γένους Atyaephyra. Φαίνεται πιθανότερη μια φυλογεωγραφική θεώρηση αρχέγονης προέλευσης του γένους, με αρχική εγκατάστασή του στην περιοχή της Μεσογείου, από το τέλος της Ηώκαινης μέχρι τις αρχές της Ολιγόκαινης Εποχής. Ο πρόγονος του Atyaephyra φαίνεται να έχει ακολουθήσει μια νότια διαδρομή από την Ασία στη Μέση Ανατολή και από εκεί στη νότια Ευρώπη, δια μέσου της Βαλκανικής-Ανατολικής-Ιρανικής τεκτονικής πλάκας, από όπου και διασπάρθηκε σε όλη την ευρύτερη μεσογειακή περιοχή

    FIGURE 2. Caridina sobrina Riek, 1953 in Redescription of Caridina sobrina Riek, 1953 stat. nov. and description of a new species of Caridina from south-eastern Queensland (Decapoda, Atyidae)

    No full text
    FIGURE 2. Caridina sobrina Riek, 1953 (sp. C3). Female (AM P107223): A, mandible; B, maxillula; C, maxilla; D, first maxilliped; E, second maxilliped; F, third maxilliped; G, tip of terminal part of third maxilliped, ventromesial view. Scale bar: 0.5 mm.Published as part of <i>Christodoulou, Magdalini & Grave, Sammy De, 2023, Redescription of Caridina sobrina Riek, 1953 stat. nov. and description of a new species of Caridina from south-eastern Queensland (Decapoda, Atyidae), pp. 582-594 in Zootaxa 5353 (6)</i> on page 585, DOI: 10.11646/zootaxa.5353.6.5, <a href="http://zenodo.org/record/10027165">http://zenodo.org/record/10027165</a&gt

    Caridina sobrina Riek 1953, stat. nov.

    No full text
    <i>Caridina sobrina</i> Riek, 1953 stat. nov. <p>(Figs. 1–3)</p> <p> <i>Caridina indistincta sobrina</i> Riek, 1953: 119, fig. 9.— Springthorpe & Lowry, 1994: 75.— Davie, 2002: 225.— Page <i>et al.</i>, 2005: 139, 140.</p> <p> <i>Caridina indistincta</i> sp. C3 Page & Hughes, 2007a: 225.</p> <p> <b>Type material.</b> i) ovigerous female (most intact individual), pocl 3.5 mm, Rocky Creek, Fraser Island, leg. E.F. Riek, viii.1941; ii) 11 individuals (pocl 2.6–3.0 mm); iii) 19 ind. (pocl 2.8–3.5 mm); iv) 4 ind. (pocl 2.6–3.8 mm), dissected by A. Gurney (AM P13329). Lots i–iv separated, but in same jar; holotype designated by Riek (1953), not visibly separated nor separable in vial.</p> <p> <b>Other material examined.</b> 5 females (pocl 3.5–4.4 mm), Bowarrady Creek, Fraser Isl., 25.133°S, 153.165°E, leg. T.J. Page, J.H. Fawcett & B.D. Cook, 21.v.2003 (AM P107219); 4 females, 3 males (pocl 3.6–4.6 mm), Bowarrady Creek, Fraser Isl., 25.133°S, 153.165°E, leg. T.J. Page, J.H. Fawcett & B.D. Cook, 21.v.2003 (AM P107220); 1 ov. female, 4 females (pocl 3.5–4.1 mm), Rocky Creek, Fraser Isl., 25.473°S, 153.010°E, leg. T.J. Page, J.H. Fawcett & B.D. Cook, 22.v.2003 (AM P107221); 5 females, 1 male, 3 juveniles (pocl 2.9–3.8 mm), Rocky Creek, Fraser Isl., 25.473°S, 153.010°E, leg. T.J. Page, J.H. Fawcett & B.D. Cook, 22.v.2003 (AM P107222); female (pocl 4.3 mm; illustrated) Rocky Creek, Fraser Isl., 25.473°S, 153.010°E, leg. T.J. Page, J.H. Fawcett & B.D. Cook, 22.v.2003 (AM P107223); male (pocl 4.0 mm; illustrated) Rocky Creek, Fraser Isl., 25.473°S, 153.010°E, leg. T.J. Page, J.H. Fawcett & B.D. Cook, 22.v.2003 (AM P107224).</p> <p> <b>Description.</b> Rostrum usually reaching to distal margin of scaphocerite, occasionally slightly shorter or longer (Fig. 1A); upper margin straight, bearing 11–21 sutured, equidistant teeth, with additionally 0–2 placed behind orbit; rostrum deeper at distal one-third, gradually narrowing distally; ventral margin with 3–7 teeth, proximal quarter unarmed; tip simple. Lower orbital angle prominent, weakly triangular (Fig. 1A); antennal tooth separated from orbit, triangular, slightly longer than orbital angle; no other carapacial teeth; pterygostomial angle weakly quadrate (Fig. 1A).</p> <p> Eyes of usual form and shape for epigean <i>Caridina</i> (Fig. 1A); cornea well-pigmented, eye reaching to distolateral margin of stylocerite.</p> <p>Abdominal somites smooth, with rounded pleura; sixth somite twice as long as fifth; preanal carina with well-developed upright tooth (Fig. 4C). Telson broadest proximally, gradually tapering towards distal margin (Fig. 1D); bearing 4 pairs of dorsolateral spinules, off-set from lateral margin; distal margin with medial tooth (Fig. 1E), flanked by 4 pairs of setulose, spiniform setae, outer pair shortest, outer-most submedian pair longest.</p> <p>Antennular peduncle (Fig. 1B) with well-developed stylocerite, almost reaching to distomedial margin of basal segment; anterolateral lobe of basal segment well-developed, pointed; intermediate segment longer than distal segment; distal segment less than half length of basal segment. Scaphocerite (Fig. 1A, C) reaching to tip of rostrum, about 3 times as long as wide; outer margin straight, ending in well-developed tooth, falling short of distal margin of lamella.</p> <p>Mouthparts without special features, as illustrated (Fig. 2).</p> <p>First pereiopod robust, short (Fig. 3A), reaching to about tip of stylocerite; fingers short, blunt and stubby, slightly longer than palm; carpus weakly excavated distally, slightly shorter than chela; widening distally (prior to excavation) to almost twice proximal with; merus slightly longer than carpus; ischium shorter.Second pereiopod more slender than first (Fig. 3B), reaching to about distal margin of second article of antennular peduncle, occasionally shorter or longer; finger blunt, about 1.4–1.5 times as long as palm; carpus long, slender, barely distally excavated; about 1.4–1.5 times as long as chela, widening distally to almost twice proximal with; merus about 0.8–0.9 times as long as carpus, almost twice as long as ischium. Third pereiopod (Fig. 3C–D) reaching to around distal margin of antennular peduncle; dactylus with 7–9 spiniform setae on flexor margin (not counting unguis), gradually increasing in size, sub-terminal one largest, terminal spiniform seta about 1.2 as long as sub-terminal one; propodus about 5.0–5.2 times as long as dactylus, flexor margin armed with series of marginal spinules over its entire length; carpus about 0.60–0.62 times as along as propodus, flexor margin with well-developed subdistal spiniform seta and 3 or 4 spinules along flexor margin; merus elongated, about 1.23–1.25 times as long as propodus, armed with 3 spiniform setae on flexor margin; ischium short, armed with single spiniform seta on flexor margin. Fourth pereiopod similar to third, reaching to around distal margin of first article of antennular peduncle, occasionally noticeably shorter; dactylus with 8 or 9 spiniform setae (including unguis) on flexor margin. Fifth pereiopod, shorter (Fig. 3E–F), proportions similar to other pereiopods; dactylus with 20–29 spiniform seta (including unguis) on flexor margin, merus with 2 spiniform setae along flexor margin, ischium unarmed. Third maxilliped and first four pereiopods with mastigobranchs; setobranch present on all pereiopods (reduced on fifth).</p> <p>Male first pleopod (Fig. 4D) with endopod (Fig. 4E) about 0.3 times as long as exopod, conical in overall shape. Second pleopod (Fig. 4F) with endopod shorter than exopod; appendix masculina (Fig. 4G) reaching to about 0.6 of endopod length, with series of long, spinulose setae; appendix interna shorter, about 0.80 of appendix masculina length, distally furnished with numerous cincinnuli. Single ovigerous female examined with 9 eggs, non-eyed, approximately 0.6 × 1.1 mm in diameter.</p> <p>Uropodal protopod (Fig. 4A) with lateral lobe ending in prominent tooth over base of exopod; exopod with straight lateral margin, ending in distinct tooth (Fig. 4B); diaeresis with 10–12 regularly spaced, short spiniform setae.</p> <p> <b>Distribution.</b> Only known from Fraser Island (Alligator Creek, Bowarrady Creek, Coongul Creek, Lake Birrabeen, Rocky Creek, Wanggoolba Creek, Woralie Creek,), Queensland (see Page & Hughes 2007a: fig. 1).</p> <p> <b>Genbank COI haplotype accession numbers:</b> DQ656429 (Bowarrady Creek, AM P107219), DQ656432 (Bowarrady Creek, AM P107220), AY795019 (Rocky Creek, AM P107221), AY795020 (Rocky Creek, AM P107222).</p> <p> <b>Remarks.</b> Chenoweth & Hughes (2003) reported on the genetic divergence of three unnamed species of <i>Caridina</i> from coastal drainages in Queensland, which they referred to as the <i>C. indistincta</i> complex. Both <i>Caridina indistincta</i> sp. A and <i>C. indistincta</i> sp. B were only found on the mainland, and <i>C. indistincta</i> sp. C exclusively encountered on Moreton Island. The COI divergence between the three “species” was high, with <i>C. indistincta</i> sp. C having a nucleotide divergence of 15.85 (± 2.04) and 13.23 (± 1.79) to <i>C. indistincta</i> sp. A and <i>C. indistincta</i> sp. B, respectively; and 9.03 (± 1.39) between <i>C. indistincta</i> sp. A and <i>C. indistincta</i> sp. B. Page & Hughes (2007b) further explored the geographic genetic structure within <i>C. indistincta</i> sp. C, and recovered a deep split between three lineages: <i>C. indistincta</i> sp. C1, found on Moreton Island and along the western side of North Stradbroke Island; <i>C. indistincta</i> sp. C2, found along the eastern side of North Stradbroke Island and a few mainland locations and <i>C. indistincta</i> sp. C3, restricted to Fraser Island (type locality of <i>C. indistincta sobrina</i>). The COI divergence of the Fraser Island population (sp. C3) was found to be high, 9.6% (± 0.1) and 5.3% (±0.1) to sp. C1 and sp. C2, respectively.</p> <p> The sequenced material of <i>Caridina indistincta</i> sp. C 3 in Page & Hughes (2007b) and herein restudied (see non-type material) corresponds perfectly with the type series of <i>C. indistincta sobrina</i> Riek, 1953, which is herein redescribed and elevated to species level, based on the genetic divergences reported in Chenoweth & Hughes (2003) to the mainland “species” A and B. Although it remains somewhat unclear, one of these two lineages (A, B) should logically correspond to <i>C. indistincta</i> Calman, 1962; with a cursory examination of the type material by S. Choy indicating it indeed to be taxon <i>C. indistincta</i> sp. B (T. Page, pers. comm.). Whilst it may seem premature to redescribe a subspecies, elevate it to species status and partially resolve a species complex, without first considering the nominal subspecies at its core, the imprecise type locality (“St George’s District) and the complex nature of Queensland <i>Caridina</i> interrelationships is currently impeding progress on this. As it seems possible to resolve (at least in part) the taxonomy of the <i>Caridina</i> populations occurring on the sand islands, it appears best to proceed piecemeal.</p> <p> Riek (1953) designated a holotype for <i>C. indistincta sobrina</i> in the paper describing the taxon, although it was already noted by Springthorpe & Lowry (1994) that this specimen was not separated by Riek from the rest of the type series and the description is too vague to allow recognition of the specimen.</p> <p> From the 13 other, named species of <i>Caridina</i> previously reported to occur in Queensland (Davie 2002; Choy <i>et al.</i> 2019; de Mazancourt <i>et al.</i> 2018, 2020), the dentate rostrum of <i>C. sobrina</i> easily allows the species to be distinguished from <i>C. confusa</i>, <i>C. malanda</i>, <i>C. spinula</i>, <i>C. typus</i> and <i>C. zebra</i>, all of which have short, dorsally unarmed rostra. The presence of exopods on the first pereiopods in <i>C. wilkinsi</i> immediately separates that species from <i>C. sobrina</i>, in which these are lacking; whilst <i>C. gracilipes</i> can be easily distinguished by its very long, upturned rostrum (cf. Riek 1953; de Mazancourt <i>et al.</i> 2018). <i>Caridina thermophila</i>, only known from hot water springs in the Great Artesian Basin (Choy 2020) is superficially somewhat similar to <i>C. sobrina</i>, but differs in the higher number of dorsal teeth on the rostrum, 20–24 (vs. 11–21 in <i>C. sobrina</i>) albeit overlapping, as well as its smaller size and smaller egg size (0.85 × 0.53 vs. 1.05 × 0.6), the higher number of spiniform seta on flexor margin of the dactylus of the fifth pereiopod (45–49 vs. 19–28) and the higher number of diaeresis spines (15–17 vs. 10–12). There are probably further differences evident between both species, but only the short, insufficiently illustrated account of Riek (1953) and a few comments by Choy (2020) are available for comparison. The recently described <i>C. pisuku</i>, can be easily distinguished from <i>C. sobrina</i> by the distal, unarmed portion of the rostrum and the shape of the male first pleopod; as well as egg size (0.36–0.47 × 0.28–0.29 in <i>C. pisuku</i> vs. 0.6 × 1.1 in <i>C. sobrina</i>) (see de Mazancourt <i>et al.</i> 2020). <i>Caridina sobrina</i> can be differentiated from <i>C. serratirostris</i> by the angular pterygostomial margin, the lower number of postorbital, dorsal rostral teeth (0–2 in <i>C. sobrina</i> vs. 7–10 in <i>C. serratirostris</i>), the higher number of dorsal rostral teeth overall (22–26 in <i>C. serratirostris</i> vs. 11–21 in <i>C. sobrina</i>), the lower number of spiniform setae on the dactylus of the fifth pereiopod (19–28 vs. 10–15, respectively), the number of diaeresis spines (10–12 vs. 15–17 respectively), as well as egg size (0.30–0.38 × 0.18–0.23 in <i>C. serratirostris</i> vs. 0.6 × 1.1 in <i>C. sobrina</i>) (based on de Mazancourt <i>et al.</i> 2020). No detailed morphological descriptions are available for specimens from Queensland, identified as <i>C. celebensis</i> or <i>C. nilotica</i>, nor is it clear whether the local populations actually belong to those species, other species from species complexes like <i>C. nilotica</i> or indeed whether novel taxa are involved. A morphological comparison with those forms is thus left out of this study, although it is emphasised that in the genetic analysis of Page <i>et al.</i> (2007a), these taxa are unrelated.</p> <p> Perhaps not surprisingly, morphologically (as well as genetically) <i>C. sobrina</i> is closest to <i>C. indistincta</i> and <i>C. pagei</i> <b>sp. nov.</b> Based on the description of <i>C. indistincta</i> by Calman (1926), both species can be separated by the number of spiniform setae on the meri of ambulatory pereiopods 3–5 (2, 2, 1 in <i>C. indistincta</i> vs. 3, 3, 2 in <i>C. sobrina</i>), the number of dorsal teeth on the rostrum (20–32 in <i>C. indistincta</i> vs. 11–21 in <i>C. sobrina</i>), the general shape of the rostrum, which is more gracile, and the stylocerite only reaching the middle of the first antennal segment in <i>C. indistincta</i> rather than exceeding the middle in <i>C. sobrina</i>. The type description of Calman (1926) was, however, only based on eight specimens and more variation may be evident when larger sample sizes are available. Indeed, Riek (1953) mentions the number of spiniform setae on the meri of the ambulatory pereiopods to be 3, 3, 2 for <i>C. indistincta</i> at species level and does not mention a difference in this number for his new subspecies, <i>C. indistincta sobrina</i>, potentially negating this, the outlined difference between the species. Riek (1953) further mentions the number of spinules on the dactylus of the fifth pereiopod to be 20–32 for <i>C. sobrina</i> in contrast to 37–43 mentioned for the species (perhaps alluding to the nominal subspecies?). Additionally, Page <i>et al.</i> (2005) in their key mention differences in rostrum shape, as being lance-like for sp. A–B (the latter being the presumed true <i>C. indistincta</i>, see above) versus dagger-like for sp. C (i.e., <i>C. sobrina</i> and <i>C. pagei</i> sp. nov.), as well as differences in egg size and number (less than 1.5 mm in diameter and more than 50 in number in sp. A–B vs. larger than 1.5 mm and less than 50 in sp. C). Although a fuller comparison must await a detailed redescription of <i>C. indistincta</i>, it is evident that both species are morphologically very similar and it is acknowledged that identification may be difficult without genetic data, but such is the nature of <i>Caridina</i> taxonomy. For morphological differences from <i>C. pagei</i> <b>sp. nov.</b>, see diagnosis of that species below.</p>Published as part of <i>Christodoulou, Magdalini & Grave, Sammy De, 2023, Redescription of Caridina sobrina Riek, 1953 stat. nov. and description of a new species of Caridina from south-eastern Queensland (Decapoda, Atyidae), pp. 582-594 in Zootaxa 5353 (6)</i> on pages 583-589, DOI: 10.11646/zootaxa.5353.6.5, <a href="http://zenodo.org/record/10027165">http://zenodo.org/record/10027165</a&gt

    Lectotype designation and distribution updates on the freshwater shrimp species Atyaephyra stankoi Karaman 1972

    No full text
    Christodoulou, Magdalini, Kihara, Terue Cristina (2018): Lectotype designation and distribution updates on the freshwater shrimp species Atyaephyra stankoi Karaman 1972. Zootaxa 4531 (1): 123-133, DOI: https://doi.org/10.11646/zootaxa.4531.1.

    Atyaephyra stankoi Christodoulou & Kihara 2018

    No full text
    Atyaephyra stankoi Karaman 1972 (Fig. 3 A–B) Atyaephyra Desmaresti var. occidentalis Bouvier 1913: 65 –74, Figs 2I, 3I, partim. Atyaephyra desmarestii desmarestii — Holthuis 1961: 5 –10, Figs 2B, 3B, partim. Atyaephyra desmarestii stankoi Karaman 1972: 81 –84, Figs 3, 6, 9, 10 [type locality: Dojransee, Mazedonien]. Atyaephyra stankoi — Christodoulou et al. 2012: 78 –82, Figs 5, 6. Atyaephyra stankoi — García Muñoz et al. 2014: 415 –416, Fig. 7. Material examined. Type material. Lectotype: 1 ovigerous female, CL 5.3 mm, ZZDBE-DEC-009, Doiran Lake (= Dojransko jezero), Macedonia, 21.07.1970, leg. M. Karaman [here designated]. Paralectotypes: 20 males, CL 3.0– 4.2 mm, 41 females (6 ovigerous), CL 2.8–5.5 mm, 1 juvenile, ZZDBE-DEC-010, same data collection as holotype. Paralectotypes 4 males, CL 3.2–4.0 mm, 6 females (2 ovigerous), CL 3.2–5.4 mm (including sequenced specimen: Doir 3), OUMNH.ZC-2018-05-029, same data collection as holotype. Brief description of lectotype (Fig 3A –B ). Rostrum long, slender, dorsal margin slightly curved in the middle and pointed upwards, 7.2 × as long as high, equal to scaphocerite with 26 (2 pre orbital) teeth on dorsal margin of rostrum arranged up to tip and 4 teeth arranged on ventral margin of rostrum. Carapace smooth with pterygostomial angle not protruding, rounded. Pleuron of fifth abdominal segment slightly pointed ending in an about 90° angle. Telson with five pairs of dorsolateral short spiniform setae, distal margin of telson slightly convex with eight spiniform setae. Outermost pair of spiniform setae shortest, similar to dorsolateral setae, adjacent pair stronger terminating beyond the inner six finely setulose setae. Basal segment of antennular peduncle with long stylocerite, with its tip failing to reach distal end of basal segment. Anterolateral lobe of basal segment short and rounded. Basal endite of first maxilliped reaching before distal end of exopod. Distal one-third of terminal segment of third maxilliped bearing 21 mesial setae and one subdistal lateral spine near the base of larger terminal spine. Eggs size 0.50 x 0.35 mm. Distribution. Atyaephyra stankoi is a Balkan endemic species found in freshwater habitats in the mainland Greece, spanning from south Western Greece northwards to Central Macedonia, and to F.Y.R.O.M., spanning from the type locality (Doiran Lake) to north of Skopje (Fig. 4). Remarks. According to the original description of A. stankoi by Karaman (1972), the type material consisted of 27 male and 50 female individuals, the type locality was Dojransee (German for Doiran Lake), Mazedonien (= Macedonia) and the collector was himself. The current syntypic material came to the attention of the authors after Dr Ivo Karaman’s son of Mladen Karaman, indication. The material was kept within the zoological collections of the University of Novi Sad, Serbia and is consisted of 24 males, 48 females and 1 juvenile, 4 individuals are missing. However, on the actual label (Fig. 3C) of this material the following information is provided: (1) “ Atyaephyra desmaresti spp. stankoi n.ssp. ”, (2) “ Syntypen!”, (3) “Dojransko jezero” (Serbian for Doiran Lake) and (4) “ 21-vii-70 ”. Although the number of individuals is slightly less (could be that very smallsized individuals were lost) the collector and the locality completely agree with those mentioned in Karaman (1972). In the original description by Karaman (1972) the date of the collection was not given, but the collection date of these specimens is earlier than the published date of the original description, so there is no contradiction on this point. There is no doubt that the ZZDBE-DEC-009–010 and the OUMNH.ZC-2018-05-029 specimens are those upon which Karaman’s (1972) original description was based, especially since they are labelled as syntypes. Thus in order to be in accordance with the International Code of Zoological Nomenclature (ICZN) and specifically in accordance with the Article 75.8 (ICZN 1999) the rediscovered material becomes again the name-bearing type and the neotype (NHM 2012.1475, adult female, CL 6.0 mm) designated by Christodoulou et al. (2012: 77) is set aside. The fittest (with most of its appendages intact) and one of the largest ovigerous females is hereby designated as a lectotype while the remaining material is set as paralectotypes according to Article 74 (ICZN 1999). The lectotype and the majority of the paralectotypes are stored in the zoological collections of the University of Novi Sad, Serbia, while 10 paralectotypes are donated to the OUMNH for storing for safety reasons. No change is deemed for the type locality as the neotype was also collected from Doiran Lake. The COI gene tree produced by Neighbour-joining analysis confirmed the placement of the studied individuals to the species Atyaephyra stankoi. All specimens classified as A. stankoi by morphology including one of the paralectotypes as well as the sequences mined from GenBank (García Muñoz et al. 2014) were cluster together with high support (Fig. 2). Three phylogenetic clusters were recognised within the species A. stankoi in the COI tree (Fig 2). First cluster includes specimens from lakes and rivers in Western Greece, the second from Attiki and the third from Thessaly and Central Macedonia. The uncorrected p-distances of the COI mitochondrial sequences range between the specimens of A. stankoi from 0.0–4%, while between A. stankoi and the other European Atyaephyra species range from 9.3–17.29%. The total number of A. stankoi ’s haplotypes obtained from 14 collection sites was 10 (H9–H18). Three haplotypes (H9, H10, H16) were shared between other specimens from adjacent localities (Table 1, Fig. 2). Additionally, eight new haplotypes belonging to other European Atyaephyra species are given for comparison purposes. In the current study the species is recorded for the first time from Pineios River in Peloponnesus (Table 2; Fig. 4, collection site: 7) and the Kifisos River in Attica (Table 2; Fig. 4, collection site: 9).Published as part of Christodoulou, Magdalini & Kihara, Terue Cristina, 2018, Lectotype designation and distribution updates on the freshwater shrimp species Atyaephyra stankoi Karaman 1972, pp. 123-133 in Zootaxa 4531 (1) on pages 128-130, DOI: 10.11646/zootaxa.4531.1.7, http://zenodo.org/record/261444

    FIGURE 4. Caridina sobrina Riek, 1953 in Redescription of Caridina sobrina Riek, 1953 stat. nov. and description of a new species of Caridina from south-eastern Queensland (Decapoda, Atyidae)

    No full text
    FIGURE 4. Caridina sobrina Riek, 1953 (sp. C3). Female (AR): A, uropod; B, diaeresis; C, preanal carina. Male (AM P107224): D, first pleopod; E, endopod of first pleopod; F, second pleopod; G, appendix masculina and appendix interna. Scale bars: 1 mm (A, D, F), 0.5 mm (C); 0.25 mm (B, E, G).Published as part of <i>Christodoulou, Magdalini & Grave, Sammy De, 2023, Redescription of Caridina sobrina Riek, 1953 stat. nov. and description of a new species of Caridina from south-eastern Queensland (Decapoda, Atyidae), pp. 582-594 in Zootaxa 5353 (6)</i> on page 588, DOI: 10.11646/zootaxa.5353.6.5, <a href="http://zenodo.org/record/10027165">http://zenodo.org/record/10027165</a&gt
    corecore