137 research outputs found

    A comparative study of a heat and fluid flow problem using three models of different levels of sophistication

    Get PDF
    AbstractThree mathematical models of different levels of sophistication have been used to study a practical problem on underground heat and fluid flow, associated with the seasonal storage of hot water in an aquifer. A number of scenarios have been examined using the three models. For the basic problem the three models yield similar results, so use of the simplest is preferred. For several variations on the problem, only the more complicated models are adequate to properly address the problem. In general, the choice of an appropriate model is very problem-specific and requires not only experience with modelling methods, but also an understanding of the physics of the problem

    Efficient Parallel Simulation of CO2 Geologic Sequestration in Saline Aquifers

    Get PDF

    Predictions of long-term behavior of a large-volume pilot test for CO2 geological storage in a saline formation in the Central Valley, California

    Get PDF
    The long-term behavior of a CO{sub 2} plume injected into a deep saline formation is investigated, focusing on mechanisms that lead to plume stabilization. Key measures are plume migration distance and the time evolution of CO{sub 2} phase-partitioning, which are examined by developing a numerical model of the subsurface at a proposed power plant with CO{sub 2} capture in the San Joaquin Valley, California, where a large-volume pilot test of CO{sub 2} injection will be conducted. The numerical model simulates a four-year CO{sub 2} injection period and the subsequent evolution of the CO{sub 2} plume until it stabilizes. Sensitivity studies are carried out to investigate the effect of poorly constrained model parameters permeability, permeability anisotropy, and residual gas saturation
    • …
    corecore