86 research outputs found

    CO2 Sensitivity of Southern Ocean Phytoplankton

    Get PDF
    The Southern Ocean exerts a strong impact on marine biogeochemical cycles and global air-sea CO2 fluxes. Over the coming century, large increases in surface ocean CO2 levels, combined with increased upper water column temps. and stratification, are expected to diminish Southern Ocean CO2 uptake. These effects could be significantly modulated by concomitant CO2-dependent changes in the region\u27s biol. carbon pump. Here we show that CO2 concentrations affect the physiology, growth and species composition. of phytoplankton assemblages in the Ross Sea, Antarctica. Field results from in situ sampling and ship-board incubation experiments demonstrate that inorganic carbon uptake, steady-state productivity and diatom species composition are sensitive to CO2 concentrations ranging from 100 to 800 ppm. Elevated CO2 led to a measurable increase in phytoplankton productivity, promoting the growth of larger chain-forming diatoms. Our results suggest that CO2 concentrations can influence biological carbon cycling in the Southern Ocean, thereby creating potential climate feedbacks

    Late Holocene intensification of the westerly winds at the subantarctic Auckland Islands (51° S), New Zealand

    Get PDF
    Abstract. The Southern Hemisphere westerly winds (SHWWs) play a major role in controlling wind-driven upwelling of Circumpolar Deep Water (CDW) and outgassing of CO2 in the Southern Ocean, on interannual to glacial–interglacial timescales. Despite their significance in the global carbon cycle, our understanding of millennial- and centennial-scale changes in the strength and latitudinal position of the westerlies during the Holocene (especially since 5000 yr BP) is limited by a scarcity of palaeoclimate records from comparable latitudes. Here, we reconstruct middle to late Holocene SHWW variability using a fjord sediment core collected from the subantarctic Auckland Islands (51° S, 166° E), located in the modern centre of the westerly wind belt. Changes in drainage basin response to variability in the strength of the SHWW at this latitude are interpreted from downcore variations in magnetic susceptibility (MS) and bulk organic δ13C and atomic C ∕ N, which monitor influxes of lithogenous and terrestrial vs. marine organic matter, respectively. The fjord water column response to SHWW variability is evaluated using benthic foraminifer δ18O and δ13C, both of which are influenced by the isotopic composition of shelf water masses entering the fjord. Using these data, we provide marine and terrestrial-based evidence for increased wind strength from  ∼  1600 to 900 yr BP at subantarctic latitudes that is broadly consistent with previous studies of climate-driven vegetation change at the Auckland Islands. Comparison with a SHWW reconstruction using similar proxies from Fiordland suggests a northward migration of the SHWW over New Zealand during the first half of the last millennium. Comparison with palaeoclimate and palaeoceanographic records from southern South America and West Antarctica indicates a late Holocene strengthening of the SHWW after  ∼  1600 yr BP that appears to be broadly symmetrical across the Pacific Basin. Contemporaneous increases in SHWW at localities on either side of the Pacific in the late Holocene are likely controlled atmospheric teleconnections between the low and high latitudes, and by variability in the Southern Annular Mode and El Niño–Southern Oscillation. </jats:p

    Relative sea-level rise around East Antarctica during Oligocene glaciation

    Get PDF
    During the middle and late Eocene (∼48-34 Myr ago), the Earth's climate cooled and an ice sheet built up on Antarctica. The stepwise expansion of ice on Antarcticainduced crustal deformation and gravitational perturbations around the continent. Close to the ice sheet, sea level rosedespite an overall reduction in the mass of the ocean caused by the transfer of water to the ice sheet. Here we identify the crustal response to ice-sheet growth by forcing a glacial-hydro isostatic adjustment model with an Antarctic ice-sheet model. We find that the shelf areas around East Antarctica first shoaled as upper mantle material upwelled and a peripheral forebulge developed. The inner shelf subsequently subsided as lithosphere flexure extended outwards from the ice-sheet margins. Consequently the coasts experienced a progressive relative sea-level rise. Our analysis of sediment cores from the vicinity of the Antarctic ice sheet are in agreement with the spatial patterns of relative sea-level change indicated by our simulations. Our results are consistent with the suggestion that near-field processes such as local sea-level change influence the equilibrium state obtained by an icesheet grounding line

    Pliocene deglacial event timelines and the biogeochemical response offshore Wilkes Subglacial Basin, East Antarctica

    Get PDF
    Significantly reduced ice coverage in Greenland and West Antarctica during the warmer-than-present Pliocene could account for ∼10m of global mean sea level rise. Any sea level increase beyond this would require contributions from the East Antarctic Ice Sheet (EAIS). Previous studies have presented low-resolution geochemical evidence from the geological record, suggesting repeated ice advance and retreat in low-lying areas of the EAIS such as the Wilkes Subglacial Basin. However, the rates and mechanisms of retreat events are less well constrained. Here we present orbitally-resolved marine detrital sediment provenance data, paired with ice-rafted debris and productivity proxies, during three time intervals from the middle to late Pliocene at IODP Site U1361A, offshore of the Wilkes Subglacial Basin. Our new data reveal that Pliocene shifts in sediment provenance were paralleled by increases in marine productivity, while the onset of such changes was marked by peaks in ice-rafted debris mass accumulation rates. The coincidence of sediment provenance and marine productivity change argues against a switch in sediment delivery between ice streams, and instead suggests that deglacial warming triggered increased rates of iceberg calving, followed by inland retreat of the ice margin. Timescales from the onset of deglaciation to an inland retreated ice margin within the Wilkes Subglacial Basin are on the order of several thousand years. This geological evidence corroborates retreat rates determined from ice sheet modeling, and a contribution of ∼3 to 4m of equivalent sea level rise from one of the most vulnerable areas of the East Antarctic Ice Sheet during interglacial intervals throughout the middle to late Pliocene.Provenance analysis was supported by a Kristian Gerhard Jeb-sen PhD Scholarship and NERC UK IODP grants (NE/H025162/1 and NE/H014144/1). Biogenic silica data was supported by a Royal So-ciety of New Zealand Marsden FastStart grant (#UOO-1315) and a University of Otago PhD Scholarship. Support for sedimentol-ogyanalysis was provided by the Royal Society of New ZealandRutherford Discovery Fellowship (RDF-13-VUW-003). XRF work was supported by the Ministry of Science and Innovation Grant CTM2014-60451-C2-1-P co-financed by the European Regional De-velopment Fund (FEDER). Samples were provided by the Integrated Ocean Drilling Program

    Sensitivity of Holocene East Antarctic productivity to subdecadal variability set by sea ice

    Get PDF
    Antarctic sea-ice extent, primary productivity and ocean circulation represent interconnected systems that form important components of the global carbon cycle. Subdecadal to centennial-scale variability can influence the characteristics and interactions of these systems, but observational records are too short to evaluate the impacts of this variability over longer timescales. Here, we use a 170-m-long sediment core collected from Integrated Ocean Drilling Program Site U1357B, offshore Adélie Land, East Antarctica to disentangle the impacts of sea ice and subdecadal climate variability on phytoplankton bloom frequency over the last ~11,400 years. We apply X-ray computed tomography, Ice Proxy for the Southern Ocean with 25 carbon atoms, diatom, physical property and geochemical analyses to the core, which contains an annually resolved, continuously laminated archive of phytoplankton bloom events. Bloom events occurred annually to biennially through most of the Holocene, but became less frequent (~2–7 years) at ~4.5 ka when coastal sea ice intensified. We propose that coastal sea-ice intensification subdued annual sea-ice break-out, causing an increased sensitivity of sea-ice dynamics to subdecadal climate modes, leading to a subdecadal frequency of bloom events. Our data suggest that projected loss of coastal sea ice will impact the influence of subdecadal variability on Antarctic margin primary productivity, altering food webs and carbon-cycling processes at seasonal timescales.</p

    Five million years of Antarctic Circumpolar Current strength variability

    Get PDF
    The Antarctic Circumpolar Current (ACC) represents the world’s largest ocean-current system and affects global ocean circulation, climate and Antarctic ice-sheet stability1–3. Today, ACC dynamics are controlled by atmospheric forcing, oceanic density gradients and eddy activity4. Whereas palaeoceanographic reconstructions exhibit regional heterogeneity in ACC position and strength over Pleistocene glacial–interglacial cycles5–8, the long-term evolution of the ACC is poorly known. Here we document changes in ACC strength from sediment cores in the Pacific Southern Ocean. We find no linear long-term trend in ACC flow since 5.3 million years ago (Ma), in contrast to global cooling9 and increasing global ice volume10. Instead, we observe a reversal on a million-year timescale, from increasing ACC strength during Pliocene global cooling to a subsequent decrease with further Early Pleistocene cooling. This shift in the ACC regime coincided with a Southern Ocean reconfiguration that altered the sensitivity of the ACC to atmospheric and oceanic forcings11–13. We find ACC strength changes to be closely linked to 400,000-year eccentricity cycles, probably originating from modulation of precessional changes in the South Pacific jet stream linked to tropical Pacific temperature variability14. A persistent link between weaker ACC flow, equatorward-shifted opal deposition and reduced atmospheric CO2 during glacial periods first emerged during the Mid-Pleistocene Transition (MPT). The strongest ACC flow occurred during warmer-than-present intervals of the Plio-Pleistocene, providing evidence of potentially increasing ACC flow with future climate warming

    Ice loss from the East Antarctic Ice Sheet during late Pleistocene interglacials

    Get PDF
    Understanding ice sheet behaviour in the geological past is essential for evaluating the role of the cryosphere in the climate system and for projecting rates and magnitudes of sea level rise in future warming scenarios1,2,3,4. Although both geological data5,6,7 and ice sheet models3,8 indicate that marine-based sectors of the East Antarctic Ice Sheet were unstable during Pliocene warm intervals, the ice sheet dynamics during late Pleistocene interglacial intervals are highly uncertain3,9,10. Here we provide evidence from marine sedimentological and geochemical records for ice margin retreat or thinning in the vicinity of the Wilkes Subglacial Basin of East Antarctica during warm late Pleistocene interglacial intervals. The most extreme changes in sediment provenance, recording changes in the locus of glacial erosion, occurred during marine isotope stages 5, 9, and 11, when Antarctic air temperatures11 were at least two degrees Celsius warmer than pre-industrial temperatures for 2,500 years or more. Hence, our study indicates a close link between extended Antarctic warmth and ice loss from the Wilkes Subglacial Basin, providing ice-proximal data to support a contribution to sea level from a reduced East Antarctic Ice Sheet during warm interglacial intervals. While the behaviour of other regions of the East Antarctic Ice Sheet remains to be assessed, it appears that modest future warming may be sufficient to cause ice loss from the Wilkes Subglacial Basin

    \u3ci\u3eFragilariopsis tigris\u3c/i\u3e sp. nov., a New Late Pliocene Antarctic Continental Shelf Diatom with Biostratigraphic Promise

    Get PDF
    Anew species within the genus Fragilariopsis, F. tigris, is described and illustrated using light microscopy and scanning electron microscopy. This species is restricted to a single 8-meter-thick diatom unit within the 585-meter-long section of alternating diatomites and diamictites recovered in the upper portion of the ANtarctic geological DRILLing (ANDRILL) McMurdo Ice Shelf Project (MIS) AND-1B marine sediment core. This new taxon from a diverse, well-preserved diatom assemblage is inferred to be the youngest member of the well-documented, biostratigraphically useful F. praeinterfrigidaria – F. interfrigidaria – F. weaveri lineage and may represent a near-shore corollary to the open-ocean species F. weaveri. Based on available chronostratigraphic data from AND-1B, F. tigris appears to be restricted to the earliest late Pliocene (first occurrence datum ~3.2 Ma) and is extinct before 3.0 Ma

    Fragilariopsis tigris sp. nov., a new late Pliocene Antarctic continental shelf diatom with biostratigraphic promise

    No full text
    A new species within the genus Fragilariopsis, F. tigris, is described and illustrated using light microscopy and scanning electron microscopy. This species is restricted to a single 8-meter-thick diatom unit within the 585-meter-long section of alternating diatomites and diamictites recovered in the upper portion of the ANtarctic geological DRILLing (ANDRILL) McMurdo Ice Shelf Project (MIS) AND-1B marine sediment core. This new taxon from a diverse, well-preserved diatom assemblage is inferred to be the youngest member of the well-documented, biostratigraphically useful F. praeinterfrigidaria – F. interfrigidaria – F. weaveri lineage and may represent a near-shore corollary to the open-ocean species F. weaveri. Based on available chronostratigraphic data from AND-1B, F. tigris appears to be restricted to the earliest late Pliocene (first occurrence datum ~3.2 Ma) and is extinct before 3.0 Ma.</jats:p

    Diatom Evidence for the Onset of Pliocene Cooling from AND-1B, McMurdo Sound, Antarctica

    Get PDF
    The late Pliocene, ~3.3–3.0 Ma, is the most recent interval of sustained global warmth in the geologic past. This window is the focus of climate reconstruction efforts by the U.S. Geological Survey’s Pliocene Research, Interpretation, and Synoptic Mapping (PRISM) Data/Model Cooperative, and may provide a useful climate analog for the coming century. Reconstructions of past surface ocean conditions proximal to the Antarctic continent are essential to understanding the sensitivity of the cryosphere to this key interval in Earth’s climate evolution. An exceptional marine sediment core collected from the southwestern Ross Sea (78° S), Antarctica, during ANDRILL’s McMurdo Ice Shelf Project preserves evidence of dramatic fluctuations between grounded ice and productive, open ocean conditions during the late Pliocene, reflecting orbitally-paced glacial/interglacial cycling. In this near-shore record, diatom-rich sediments are recovered from interglacial intervals; two of these diatomites, from ~3.2 Ma and 3.03 Ma, are within the PRISM chronologic window. The diatom assemblages identified in PRISM-age late Pliocene diatom-rich sediments are distinct from those in mid-Pliocene and later Pliocene/Pleistocene intervals recovered from AND-1B, and comprise both extant taxa with well-constrained ecological preferences and a diverse extinct flora, some members of which are previously undescribed from Antarctic sediments. Both units are dominated by Chaetoceros resting spores, an indicator of high productivity and stratification that is present at much lower abundance in materials both older and younger than the PRISM-age sediments. Newly described species of the genus Fragilariopsis, which first appear in the AND-1B record at 3.2 Ma, are the most abundant extinct members of the PRISM-age assemblages. Other extant species with established environmental affinities, such as Fragilariopsis sublinearis, F. curta, Stellarima microtrias, and Thalassiothrix antarctica, are present at lower abundances. Environmental inferences drawn from extant diatom assemblages are in good agreement with those from Chaetoceros resting spores and the Fragilariopsis radiation. All three lines of evidence indicate the onset of late Pliocene cooling in the Ross Sea near-shore environment at 3.2 Ma, with intensification and possible regional persistence of summer sea ice by 3.03 Ma. An important implication of this research is the indication that the Ross Ice Shelf fluctuated dramatically on orbital timescales at a time when nearshore Antarctic conditions were only modestly warmer than present
    corecore