52 research outputs found
From Genetics to Biotechnology: Synthetic Biology as a Flexible Course-embedded Research Experience
The need for changing how science is taught and the expansion of undergraduate research experiences is essential to foster critical thinking in the Natural Sciences. Most faculty research programs only involve a small number of upper-level undergraduate students each semester. The course-based undergraduate research experience (CURE) model enables more students to take ownership over an independent project and experience authentic research. Further, by creating projects that fit into a curriculum\u27s learning goals and student-oriented outcomes, departments help strengthen critical thinking skills in the classroom. Here, we report on the incorporation of a synthetic biology CURE into a mid-level cellular biology course and two advanced level genetics/molecular biology courses. Synthetic biology involves systematic engineering of novel organisms, such as bacteria and plants, to work as functional devices to solve problems in medicine, agriculture, and manufacturing. The value of synthetic biology and its ultimate utility as a teaching tool relies on reusable, standard genetic parts that can be interchanged using common genetic engineering principles. This Synthetic biology CURE effectively achieves five essential goals: (1) a sense of project ownership; (2) self-efficacy: mastery of a manageable number of techniques; (3) increased tolerance for obstacles through challenging research; (4) increased communication skills; and (5) a sense of belonging in a larger scientific community. Based upon our student assessment data, we demonstrate that this course-based synthetic biology laboratory engages students directly in an authentic research experience and models important elements of collaboration, discovery, iteration, and critical thinking
Data from: Phylogeny and biogeography of Poecilia (Cyprinodontiformes: Poeciliinae) across Central and South America based on mitochondrial and nuclear DNA markers
Poeciliids are a diverse group of small Neotropical fishes, and despite considerable research attention as models in ecology and evolutionary biology, our understanding of their biogeographic and phylogenetic relationships is still limited. We investigated the phylogenetic relationships of South and Central American Poecilia, by examining 2395 base pairs of mitochondrial DNA (ATPase 8/6, COI) and nuclear DNA (S7) for 18 species across six subgenera. Fifty-eight novel sequences were acquired from newly collected specimens and 20 sequences were obtained from previously published material. Analyses of concatenated and partitioned mitochondrial DNA and nuclear DNA sets resulted in a well-supported phylogeny that resolved several monophyletic groups corresponding to previously hypothesized subgenera and species complexes
Figure S2, BI
Newick Tree File for Fig. S2, BI with FigTree Annotation
Figure 1, ML
Newick Tree File for Fig. 1, ML with FigTree Annotation
How migratory thrushes conquered northern North America: a comparative phylogeography approach
Five species of migratory thrushes (Turdidae) occupy a transcontinental distribution across northern North America. They have largely overlapping breeding ranges, relatively similar ecological niches, and mutualistic relationships with northern woodland communities as insectivores and seed-dispersing frugivores. As an assemblage of ecologically similar species, and given other vertebrate studies, we predicted a shared pattern of genetic divergence among these species between their eastern and western populations, and also that the timing of the coalescent events might be similar and coincident with historical glacial events. To determine how these five lineages effectively established transcontinental distributions, we used mitochondrial cytochrome b sequences to assess genetic structure and lineage coalescence from populations on each side of the continent. Two general patterns occur. Hermit and Swainson’s thrushes (Catharus guttatus and C. ustulatus) have relatively deep divergences between eastern and western phylogroups, probably reflecting shared historic vicariance. The Veery (C. fuscescens), Gray-cheeked Thrush (C. minimus), and American Robin (Turdus migratorius) have relatively shallow divergences between eastern and western populations. However, coalescent and approximate Bayesian computational analyses indicated that among all species as many as five transcontinental divergence events occurred. Divergence within both Hermit and Swainson’s thrushes resembled the divergence between Gray-cheeked Thrushes and Veeries and probably occurred during a similar time period. Despite these species’ ecological similarities, the assemblage exhibits heterogeneity at the species level in how they came to occupy transcontinental northern North America but two general continental patterns at an among-species organizational level, likely related to lineage age
Figure S1, BI
Newick Tree File for Fig. S1, BI with FigTree Annotation
Figure S2, ML
Newick Tree File for Fig. S2, ML with FigTree Annotation
- …