9,609 research outputs found

    An Astronaut's Risk of Experiencing a Critical Impact from Lunar Ejecta During Lunar EVA

    Get PDF
    The Moon is under constant bombardment by meteoroids. When the meteoroid is large, the impact craters the surface, launching crater ejecta far from the impact potentially threatening astronauts on the lunar surface. In the early 1960s, the ejecta impact flux was thought no more than the sporadic meteoroid flux but with speeds one to two orders of magnitude smaller. However, the Lunar Module designers realized by 1965 that meteoroid bumpers do not perform well at the smaller ejecta impact speeds. Their estimates of the Lunar Module risk of penetration by ejecta were 25 to 50% of the total risk. This was in spite of the exposure time to ejecta being only a third of that to sporadic meteoroids. The standard committee based the 1969 NASA SP-8013 lunar ejecta environment on Zooks 1967 flux analysis and Gault, Shoemaker and Moores 1963 test data for impacts into solid basalt targets. However, Zook noted in his 1967 analysis, that if the lunar surface was composed of soil, that the ejected soil particles would be smaller than ejected basalt fragments and that the ejection speeds would be smaller. Both effects contribute to reducing the risk of a critical failure due to lunar ejecta. The authors revised Zooks analysis to incorporate soil particle size distributions developed from analysis of Apollo lunar soil samples and ejected mass as a function of ejecta speed developed from coupling parameter analyses of soil impact-test data. The authors estimated EVA risk by assuming failure occurs at a critical impact energy. At these impact speeds, this might be true for suit hard and soft goods. However, these speeds are small enough that there may be significant strength effects that require new test data to modify the hypervelocity critical energy failure criterion. With these caveats, Christiansen, Cour-Palais and Freisen list the critical energy of the ISS EMU hard upper torso as 44 J and the helmet and visor as 71 J at hypervelocity. The authors then assumed that the lunar EVA suit fails at 50 J critical energy. This results in a 1,700,000 years mean time to failure using the results of this analysis and a 3,800 years mean time to failure using NASA SP-8013

    Derivation of diagnostic models based on formalized process knowledge

    Get PDF
    © IFAC.Industrial systems are vulnerable to faults. Early and accurate detection and diagnosis in production systems can minimize down-time, increase the safety of the plant operation, and reduce manufacturing costs. Knowledge- and model-based approaches to automated fault detection and diagnosis have been demonstrated to be suitable for fault cause analysis within a broad range of industrial processes and research case studies. However, the implementation of these methods demands a complex and error-prone development phase, especially due to the extensive efforts required during the derivation of models and their respective validation. In an effort to reduce such modeling complexity, this paper presents a structured causal modeling approach to supporting the derivation of diagnostic models based on formalized process knowledge. The method described herein exploits the Formalized Process Description Guideline VDI/VDE 3682 to establish causal relations among key-process variables, develops an extension of the Signed Digraph model combined with the use of fuzzy set theory to allow more accurate causality descriptions, and proposes a representation of the resulting diagnostic model in CAEX/AutomationML targeting dynamic data access, portability, and seamless information exchange

    Discovery of TUG-770: a highly potent free fatty acid receptor 1 (FFA1/GPR40) agonist for treatment of type 2 diabetes

    Get PDF
    Free fatty acid receptor 1 (FFA1 or GPR40) enhances glucose-stimulated insulin secretion from pancreatic β-cells and currently attracts high interest as a new target for the treatment of type 2 diabetes. We here report the discovery of a highly potent FFA1 agonist with favorable physicochemical and pharmacokinetic properties. The compound efficiently normalizes glucose tolerance in diet-induced obese mice, an effect that is fully sustained after 29 days of chronic dosing

    Hypervelocity Impact of Explosive Transfer Lines

    Get PDF
    Hypervelocity impact tests of 2.5 grains per foot flexible confined detonating chord (FCDC) shielded by a 1 mm thick 2024-T3 aluminum alloy bumper standing off 51 mm from the FCDC were performed. Testing showed that a 6 mm diameter 2017-T4 aluminum alloy ball impacting the bumper at 6.97 km/s and 45 degrees impact angle initiated the FCDC. However, impact by the same diameter and speed ball at 0 degrees angle of impact did not initiate the FCDC. Furthermore, impact at 45 degrees and the same speed by a slightly smaller diameter ball (5.8 mm diameter) also did not initiate the FCDC

    Mineralization of an Axially Aligned Collagenous Matrix: A Morphological Study

    Get PDF
    Bone can be described as a highly ordered composite of type I collagen integrated with an inorganic mineral phase. In vitro models of bone mineralization using collagenous substrates have been reported in the literature. This study reports an in vitro system of mineralized reconstituted collagen fibers, with aligned fibrillar substructure. The collagen fibers were mineralized in a double diffusion chamber saturated with respect to calcium and phosphate. The morphology and ultrastructure of the mineral precipitate were evaluated as a function of the pH of the incubating media. Brushite crystal was observed at acidic pH. Large rectangular crystals formed at pH 5.15 and appear to associate with the collagen fibers. At neutral and alkaline pHs, hydroxyapatite crystals were observed in association with the collagen fibers . Spherical aggregates of hydroxyapatite crystals were seen at neutral and alkaline pHs, but these structures were reduced in size when formed on collagen at alkaline pH. On close examination these spherical structures were found to be hollow when viewed in cross section. The crystals precipitated within the interior of the collagen fiber at neutral and alkaline pHs were comparable in both size and shape to crystals observed in mineralized turkey tendon and skeletal tissues. These preliminary observations indicate that with further refinement the reconstituted collagen fibers may prove useful in model systems for the study of collagen mediated mineralization in vitro. In addition, mineralization of collagenous matrices may lead to the development of biomaterials for bone repair and replacement

    The first high-amplitude delta Scuti star in an eclipsing binary system

    Full text link
    We report the discovery of the first high-amplitude delta Scuti star in an eclipsing binary, which we have designated UNSW-V-500. The system is an Algol-type semi-detached eclipsing binary of maximum brightness V = 12.52 mag. A best-fitting solution to the binary light curve and two radial velocity curves is derived using the Wilson-Devinney code. We identify a late A spectral type primary component of mass 1.49+/-0.02 M_sun and a late K spectral type secondary of mass 0.33+/-0.02 M_sun, with an inclination of 86.5+/-1.0 degrees, and a period of 5.3504751+/-0.0000006 d. A Fourier analysis of the residuals from this solution is performed using PERIOD04 to investigate the delta Scuti pulsations. We detect a single pulsation frequency of f_1 = 13.621+/-0.015 c/d, and it appears this is the first overtone radial mode frequency. This system provides the first opportunity to measure the dynamical mass for a star of this variable type; previously, masses have been derived from stellar evolution and pulsation models.Comment: 7 pages, 6 figures, 2 tables, for submission to MNRAS, v2: paper size change, small typographical changes to abstrac

    Hypervelocity Impact Initiation of Explosive Transfer Lines

    Get PDF
    The Gemini, Apollo and Space Shuttle spacecraft utilized explosive transfer lines (ETL) in a number of applications. In each case the ETL was located behind substantial structure and the risk of impact initiation by micrometeoroids and orbital debris was negligible. A current NASA program is considering an ETL to synchronize the actuation of pyrobolts to release 12 capture latches in a contingency. The space constraints require placing the ETL 50 mm below the 1 mm thick 2024-T72 Whipple shield. The proximity of the ETL to the thin shield prompted analysts at NASA to perform a scoping analysis with a finite-difference hydrocode to calculate impact parameters that would initiate the ETL. The results suggest testing is required and a 12 shot test program with surplused Shuttle ETL is scheduled for February 2012 at the NASA White Sands Test Facility. Explosive initiation models are essential to the analysis and one exists in the CTH library for HNS I, but not the HNS II used in the Shuttle 2.5 gr/ft rigid shielded mild detonating cord (SMDC). HNS II is less sensitive than HNS I so it is anticipated that these results using the HNS I model are conservative. Until the hypervelocity impact test results are available, the only check on the analysis was comparison with the Shuttle qualification test result that a 22 long bullet would not initiate the SMDC. This result was reproduced by the hydrocode simulation. Simulations of the direct impact of a 7 km/s aluminum ball, impacting at 0 degree angle of incidence, onto the SMDC resulted in a 1.5 mm diameter ball initiating the SMDC and 1.0 mm ball failing to initiate it. Where one 1.0 mm ball could not initiate the SMDC, a cluster of six 1.0 mm diameter aluminum balls striking simultaneously could. Thus the impact parameters that will result in initiating SMDC located behind a Whipple shield will depend on how well the shield fragments the projectile and spreads the fragments. An end-to-end simulation of the impact of an aluminum ball onto a Whipple shield covering SMDC is problematic due to the hydrocode fracture models. Regardless, two simulations were performed resulting in a 5 mm ball initiating the SMDC and a 4 mm ball failing to initiate the SMDC

    Extravehicular Mobility Unit Penetration Probability from Micrometeoroids and Orbital Debris: Revised Analytical Model and Potential Space Suit Improvements

    Get PDF
    The NASA Extravehicular Mobility Unit (EMU) micrometeoroid and orbital debris protection ability has recently been assessed against an updated, higher threat space environment model. The new environment was analyzed in conjunction with a revised EMU solid model using a NASA computer code. Results showed that the EMU exceeds the required mathematical Probability of having No Penetrations (PNP) of any suit pressure bladder over the remaining life of the program (2,700 projected hours of 2 person spacewalks). The success probability was calculated to be 0.94, versus a requirement of >0.91, for the current spacesuit s outer protective garment. In parallel to the probability assessment, potential improvements to the current spacesuit s outer protective garment were built and impact tested. A NASA light gas gun was used to launch projectiles at test items, at speeds of approximately 7 km per second. Test results showed that substantial garment improvements could be made, with mild material enhancements and moderate assembly development. The spacesuit s PNP would improve marginally with the tested enhancements, if they were available for immediate incorporation. This paper discusses the results of the model assessment process and test program. These findings add confidence to the continued use of the existing NASA EMU during International Space Station (ISS) assembly and Shuttle Operations. They provide a viable avenue for improved hypervelocity impact protection for the EMU, or for future space suits

    Scaling K2. I. Revised Parameters for 222,088 K2 Stars and a K2 Planet Radius Valley at 1.9 R_⊕

    Get PDF
    Previous measurements of stellar properties for K2 stars in the Ecliptic Plane Input Catalog largely relied on photometry and proper motion measurements, with some added information from available spectra and parallaxes. Combining Gaia DR2 distances with spectroscopic measurements of effective temperatures, surface gravities, and metallicities from the Large Sky Area Multi-Object Fibre Spectroscopic Telescope (LAMOST) DR5, we computed updated stellar radii and masses for 26,838 K2 stars. For 195,250 targets without a LAMOST spectrum, we derived stellar parameters using random forest regression on photometric colors trained on the LAMOST sample. In total, we measured spectral types, effective temperatures, surface gravities, metallicities, radii, and masses for 222,088 A, F, G, K, and M-type K2 stars. With these new stellar radii, we performed a simple reanalysis of 299 confirmed and 517 candidate K2 planet radii from Campaigns 1–13, elucidating a distinct planet radius valley around 1.9 R_⊕, a feature thus far only conclusively identified with Kepler planets, and tentatively identified with K2 planets. These updated stellar parameters are a crucial step in the process toward computing K2 planet occurrence rates
    • …
    corecore