10 research outputs found

    Development of a design for an ionisation vacuum gauge suitable as a reference standard

    Get PDF
    UID/FIS/00068/2019The EURAMET EMPIR project “16NRM05 - Ion gauge” aims to develop an ionisation vacuum gauge suitable as a reference vacuum standard. In such a gauge the electron trajectories and their kinetic energy inside the ionisation volume should be well defined and stable. In the search for a suitable design, a series of simulations on different ionisation gauge concepts that have the potential to meet stringent stability requirements have been carried out. Different software packages were used for this purpose. This paper focuses on the design aspects and the performance of the different ionisation gauge concepts that have been investigated by simulation. Parameters such as ionisation gauge sensitivity, ion collection efficiency and electron transmission efficiency, have been determined as a function of emission current, pressure and electron source alignment.publishersversionpublishe

    The use of antibiotic-loaded bone cement and systemic antibiotic prophylactic use in 2,971,357 primary total knee arthroplasties from 2010 to 2020: an international register-based observational study among countries in Africa, Europe, North America, and Oceania.

    Get PDF
    BACKGROUND AND PURPOSE Antibiotic-loaded bone cement (ALBC) and systemic antibiotic prophylaxis (SAP) have been used to reduce periprosthetic joint infection (PJI) rates. We investigated the use of ALBC and SAP in primary total knee arthroplasty (TKA). PATIENTS AND METHODS This observational study is based on 2,971,357 primary TKAs reported in 2010-2020 to national/regional joint arthroplasty registries in Australia, Denmark, Finland, Germany, Italy, the Netherlands, New Zealand, Norway, Romania, South Africa, Sweden, Switzerland, the UK, and the USA. Aggregate-level data on trends and types of bone cement, antibiotic agents, and doses and duration of SAP used was extracted from participating registries. RESULTS ALBC was used in 77% of the TKAs with variation ranging from 100% in Norway to 31% in the USA. Palacos R+G was the most common (62%) ALBC type used. The primary antibiotic used in ALBC was gentamicin (94%). Use of ALBC in combination with SAP was common practice (77%). Cefazolin was the most common (32%) SAP agent. The doses and duration of SAP used varied from one single preoperative dosage as standard practice in Bolzano, Italy (98%) to 1-day 4 doses in Norway (83% of the 40,709 TKAs reported to the Norwegian arthroplasty register). CONCLUSION The proportion of ALBC usage in primary TKA varies internationally, with gentamicin being the most common antibiotic. ALBC in combination with SAP was common practice, with cefazolin the most common SAP agent. The type of ALBC and type, dose, and duration of SAP varied among participating countries

    Since 2015 the SinoGerman research project SIGN supports water quality improvement in the Taihu region, China

    Get PDF
    The Taihu (Tai lake) region is one of the most economically prospering areas of China. Due to its location within this district of high anthropogenic activities, Taihu represents a drastic example of water pollution with nutrients (nitrogen, phosphate), organic contaminants and heavy metals. High nutrient levels combined with very shallow water create large eutrophication problems, threatening the drinking water supply of the surrounding cities. Within the international research project SIGN (SinoGerman Water Supply Network, www.water-sign.de), funded by the German Federal Ministry of Education and Research (BMBF), a powerful consortium of fifteen German partners is working on the overall aim of assuring good water quality from the source to the tap by taking the whole water cycle into account: The diverse research topics range from future proof strategies for urban catchment, innovative monitoring and early warning approaches for lake and drinking water, control and use of biological degradation processes, efficient water treatment technologies, adapted water distribution up to promoting sector policy by good governance. The implementation in China is warranted, since the leading Chinese research institutes as well as the most important local stakeholders, e.g. water suppliers, are involved

    On the PLC Effect in a Particle Reinforced AA2017 Alloy

    No full text
    The Portevin–Le Châtelier (PLC) effect often results in serrated plastic flow during tensile testing of aluminum alloys. Its magnitude and characteristics are often sensitive to a material’s heat treatment condition and to the applied strain rate and deformation temperature. In this study, we analyze the plastic deformation behavior of an age-hardenable Al-Cu alloy (AA2017) and of a particle reinforced AA2017 alloy (10 vol. % SiC) in two different conditions: solid solution annealed (W) and naturally aged (T4). For the W-condition of both materials, pronounced serrated flow is observed, while both T4-conditions do not show distinct serrations. It is also found that a reduction of the testing temperature (−60 °C, −196 °C) shifts the onset of serrations to larger plastic strains and additionally reduces their amplitude. Furthermore, compressive jump tests (with alternating strain rates) at room temperature confirm a negative strain rate sensitivity for the W-condition. The occurring PLC effect, as well as the propagation of the corresponding PLC bands in the W-condition, is finally characterized by digital image correlation (DIC) and by acoustic emission measurements during tensile testing. The formation of PLC bands in the reinforced material is accompanied by distinct stress drops as well as by perceptible acoustic emission, and the experimental results clearly show that only type A PLC bands occur during testing at room temperature (RT)

    Low-pressure micro-mechanical re-adaptation device sustainably and effectively improves locomotor recovery from complete spinal cord injury

    Get PDF
    Traumatic spinal cord injuries result in impairment or even complete loss of motor, sensory and autonomic functions. Recovery after complete spinal cord injury is very limited even in animal models receiving elaborate combinatorial treatments. Recently, we described an implantable microsystem (microconnector) for low-pressure re-adaption of severed spinal stumps in rat. Here we investigate the long-term structural and functional outcome following microconnector implantation after complete spinal cord transection. Re-adaptation of spinal stumps supports formation of a tissue bridge, glial and vascular cell invasion, motor axon regeneration and myelination, resulting in partial recovery of motor-evoked potentials and a thus far unmet improvement of locomotor behaviour. The recovery lasts for at least 5 months. Despite a late partial decline, motor recovery remains significantly superior to controls. Our findings demonstrate that microsystem technology can foster long-lasting functional improvement after complete spinal injury, providing a new and effective tool for combinatorial therapies.Supported by funds from the Federal Ministry for Education and Research Germany (BMBF) and the German Legal Accident Insurance (DGUV)

    Experimental and Numerical Process Design for Press Partitioning of the New Q&P Steel 37SiB6

    No full text
    Quenching and partitioning (Q&P) heat treatments of low-alloy steels with exceptional property combinations are particularly promising. In this study, we characterize for the first time a new low-alloy steel to be processed using Q&P heat treatments. In combined experimental and numerical studies, we design a novel approach that effectively combines the short cycle times of press hardening with the excellent property profiles of Q&P-treated steels. We identify an appropriate austenization temperature of 950 °C and a portioning temperature of 250 °C for Q&P heat treatments through dilatometric studies. We adjust a number of reference conditions with fractions of 2.1 to 6.3 wt.% of retained austenite, resulting in tensile strengths up to 1860 MPa and elongations to failure up to 7%. Initial numerical designs of the process can identify varying temperature profiles and cooling rates depending on the position in the die. The results show that the geometry of the part plays a minor role, but the die temperature of 200 °C is the dominant factor for successful partitioning directly in the press hardening process
    corecore