895 research outputs found

    Circulating Tumor Biomarkers in Meningiomas Reveal a Signature of Equilibrium Between Tumor Growth and Immune Modulation

    Get PDF
    Meningiomas are primary central nervous system (CNS) tumors that originate from the arachnoid cells of the meninges. Recurrence occurs in higher grade meningiomas and a small subset of Grade I meningiomas with benign histology. Currently, there are no established circulating tumor markers which can be used for diagnostic and prognostic purposes in a non-invasive way for meningiomas. Here, we aimed to identify potential biomarkers of meningioma in patient sera. For this purpose, we collected preoperative (n = 30) serum samples from the meningioma patients classified as Grade I (n = 23), Grade II (n = 4), or Grade III (n = 3). We used a high-throughput, multiplex immunoassay cancer panel comprising of 92 cancer-related protein biomarkers to explore the serum protein profiles of meningioma patients. We detected 14 differentially expressed proteins in the sera of the Grade I meningioma patients in comparison to the age- and gender-matched control subjects (n = 12). Compared to the control group, Grade I meningioma patients showed increased serum levels of amphiregulin (AREG), CCL24, CD69, prolactin, EGF, HB-EGF, caspase-3, and decreased levels of VEGFD, TGF-α, E-Selectin, BAFF, IL-12, CCL9, and GH. For validation studies, we utilized an independent set of meningioma tumor tissue samples (Grade I, n = 20; Grade II, n = 10; Grade III, n = 6), and found that the expressions of amphiregulin and Caspase3 are significantly increased in all grades of meningiomas either at the transcriptional or protein level, respectively. In contrast, the gene expression of VEGF-D was significantly lower in Grade I meningioma tissue samples. Taken together, our study identifies a meningioma-specific protein signature in blood circulation of meningioma patients and highlights the importance of equilibrium between tumor-promoting factors and anti-tumor immunity.Peer reviewe

    An evaluation of physical and augmented patient-specific intracranial aneurysm simulators on microsurgical clipping performance and skills: a randomized controlled study

    Get PDF
    Objective: In the era of flow diversion, there is an increasing demand to train neurosurgeons outside the operating room in safely performing clipping of unruptured intracranial aneurysms. This study introduces a clip training simulation platform for residents and aspiring cerebrovascular neurosurgeons, with the aim to visualize peri-aneurysm anatomy and train virtual clipping applications on the matching physical aneurysm cases. Methods: Novel, cost-efficient techniques allow the fabrication of realistic aneurysm phantom models and the additional integration of holographic augmented reality (AR) simulations. Specialists preselected suitable and unsuitable clips for each of the 5 patient-specific models, which were then used in a standardized protocol involving 9 resident participants. Participants underwent four sessions of clip applications on the models, receiving no interim training (control), a video review session (video), or a video review session and holographic clip simulation training (video + AR) between sessions 2 and 3. The study evaluated objective microsurgical skills, which included clip selection, number of clip applications, active simulation time, wrist tremor analysis during simulations, and occlusion efficacy. Aneurysm occlusions of the reference sessions were assessed by indocyanine green videoangiography, as well as conventional and photon-counting CT scans. Results: A total of 180 clipping procedures were performed without technical complications. The measurements of the active simulation times showed a 39% improvement for all participants. A median of 2 clip application attempts per case was required during the final session, with significant improvement observed in experienced residents (postgraduate year 5 or 6). Wrist tremor improved by 29% overall. The objectively assessed aneurysm occlusion rate (Raymond-Roy class 1) improved from 76% to 80% overall, even reaching 93% in the extensively trained cohort (video + AR) (p = 0.046). Conclusions: The authors introduce a newly developed simulator training platform combining physical and holographic aneurysm clipping simulators. The development of exchangeable, aneurysm-comprising housings allows objective radio-anatomical evaluation through conventional and photon-counting CT scans. Measurable performance metrics serve to objectively document improvements in microsurgical skills and surgical confidence. Moreover, the different training levels enable a training program tailored to the cerebrovascular trainees' levels of experience and needs

    Improved homology-driven computational validation of protein-protein interactions motivated by the evolutionary gene duplication and divergence hypothesis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Protein-protein interaction (PPI) data sets generated by high-throughput experiments are contaminated by large numbers of erroneous PPIs. Therefore, computational methods for PPI validation are necessary to improve the quality of such data sets. Against the background of the theory that most extant PPIs arose as a consequence of gene duplication, the sensitive search for homologous PPIs, i.e. for PPIs descending from a common ancestral PPI, should be a successful strategy for PPI validation.</p> <p>Results</p> <p>To validate an experimentally observed PPI, we combine FASTA and PSI-BLAST to perform a sensitive sequence-based search for pairs of interacting homologous proteins within a large, integrated PPI database. A novel scoring scheme that incorporates both quality and quantity of all observed matches allows us (1) to consider also tentative paralogs and orthologs in this analysis and (2) to combine search results from more than one homology detection method. ROC curves illustrate the high efficacy of this approach and its improvement over other homology-based validation methods.</p> <p>Conclusion</p> <p>New PPIs are primarily derived from preexisting PPIs and not invented <it>de novo</it>. Thus, the hallmark of true PPIs is the existence of homologous PPIs. The sensitive search for homologous PPIs within a large body of known PPIs is an efficient strategy to separate biologically relevant PPIs from the many spurious PPIs reported by high-throughput experiments.</p

    An embedding technique to determine ττ backgrounds in proton-proton collision data

    Get PDF
    An embedding technique is presented to estimate standard model tau tau backgrounds from data with minimal simulation input. In the data, the muons are removed from reconstructed mu mu events and replaced with simulated tau leptons with the same kinematic properties. In this way, a set of hybrid events is obtained that does not rely on simulation except for the decay of the tau leptons. The challenges in describing the underlying event or the production of associated jets in the simulation are avoided. The technique described in this paper was developed for CMS. Its validation and the inherent uncertainties are also discussed. The demonstration of the performance of the technique is based on a sample of proton-proton collisions collected by CMS in 2017 at root s = 13 TeV corresponding to an integrated luminosity of 41.5 fb(-1).Peer reviewe

    Measurement of t(t)over-bar normalised multi-differential cross sections in pp collisions at root s=13 TeV, and simultaneous determination of the strong coupling strength, top quark pole mass, and parton distribution functions

    Get PDF
    Peer reviewe

    Bose-Einstein correlations of charged hadrons in proton-proton collisions at s\sqrt s = 13 TeV

    Get PDF
    Bose-Einstein correlations of charged hadrons are measured over a broad multiplicity range, from a few particles up to about 250 reconstructed charged hadrons in proton-proton collisions at s \sqrt{s} = 13 TeV. The results are based on data collected using the CMS detector at the LHC during runs with a special low-pileup configuration. Three analysis techniques with different degrees of dependence on simulations are used to remove the non-Bose-Einstein background from the correlation functions. All three methods give consistent results. The measured lengths of homogeneity are studied as functions of particle multiplicity as well as average pair transverse momentum and mass. The results are compared with data from both CMS and ATLAS at s \sqrt{s} = 7 TeV, as well as with theoretical predictions.[graphic not available: see fulltext]Bose-Einstein correlations of charged hadrons are measured over a broad multiplicity range, from a few particles up to about 250 reconstructed charged hadrons in proton-proton collisions at s=\sqrt{s} = 13 TeV. The results are based on data collected using the CMS detector at the LHC during runs with a special low-pileup configuration. Three analysis techniques with different degrees of dependence on simulations are used to remove the non-Bose-Einstein background from the correlation functions. All three methods give consistent results. The measured lengths of homogeneity are studied as functions of particle multiplicity as well as average pair transverse momentum and mass. The results are compared with data from both CMS and ATLAS at s=\sqrt{s} = 7 TeV, as well as with theoretical predictions

    Search for dark matter in events with a leptoquark and missing transverse momentum in proton-proton collisions at 13 TeV

    Get PDF
    A search is presented for dark matter in proton-proton collisions at a center-of-mass energy of root s= 13 TeV using events with at least one high transverse momentum (p(T)) muon, at least one high-p(T) jet, and large missing transverse momentum. The data were collected with the CMS detector at the CERN LHC in 2016 and 2017, and correspond to an integrated luminosity of 77.4 fb(-1). In the examined scenario, a pair of scalar leptoquarks is assumed to be produced. One leptoquark decays to a muon and a jet while the other decays to dark matter and low-p(T) standard model particles. The signature for signal events would be significant missing transverse momentum from the dark matter in conjunction with a peak at the leptoquark mass in the invariant mass distribution of the highest p(T) muon and jet. The data are observed to be consistent with the background predicted by the standard model. For the first benchmark scenario considered, dark matter masses up to 500 GeV are excluded for leptoquark masses m(LQ) approximate to 1400 GeV, and up to 300 GeV for m(LQ) approximate to 1500 GeV. For the second benchmark scenario, dark matter masses up to 600 GeV are excluded for m(LQ) approximate to 1400 GeV. (C) 2019 The Author(s). Published by Elsevier B.V.Peer reviewe

    Measurement of the Splitting Function in &ITpp &ITand Pb-Pb Collisions at root&ITsNN&IT=5.02 TeV

    Get PDF
    Data from heavy ion collisions suggest that the evolution of a parton shower is modified by interactions with the color charges in the dense partonic medium created in these collisions, but it is not known where in the shower evolution the modifications occur. The momentum ratio of the two leading partons, resolved as subjets, provides information about the parton shower evolution. This substructure observable, known as the splitting function, reflects the process of a parton splitting into two other partons and has been measured for jets with transverse momentum between 140 and 500 GeV, in pp and PbPb collisions at a center-of-mass energy of 5.02 TeV per nucleon pair. In central PbPb collisions, the splitting function indicates a more unbalanced momentum ratio, compared to peripheral PbPb and pp collisions.. The measurements are compared to various predictions from event generators and analytical calculations.Peer reviewe

    Search for an L-mu - L-tau gauge boson using Z -> 4 mu events in proton-proton collisions at root s=13 TeV

    Get PDF
    A search for a narrow Z' gauge boson with a mass between 5 and 70 GeV resulting from an L-mu - L-tau U (1) local gauge symmetry is reported. Theories that predict such a particle have been proposed as an explanation of various experimental discrepancies, including the lack of a dark matter signal in direct-detection experiments, tension in the measurement of the anomalous magnetic moment of the muon, and reports of possible lepton flavor universality violation in B meson decays. A data sample of proton-proton collisions at a center-of-mass energy of 13 TeV is used, corresponding to an integrated luminosity of 77.3 fb(-1) recorded in 2016 and 2017 by the CMS detector at the LHC. Events containing four muons with an invariant mass near the standard model Z boson mass are analyzed, and the selection is further optimized to be sensitive to the events that may contain Z -> Z'mu mu -> 4 mu decays. The event yields are consistent with the standard model predictions. Upper limits of 10(-8)-10(-7) at 95% confidence level are set on the product of branching fractions B(Z -> Z'mu mu)B(Z' -> mu mu), depending on the Z' mass, which excludes a Z' boson coupling strength to muons above 0.004-0.3. These are the first dedicated limits on L-mu - L-tau models at the LHC and result in a significant increase in the excluded model parameter space. The results of this search may also be used to constrain the coupling strength of any light Z' gauge boson to muons. (C) 2019 The Author(s). Published by Elsevier B.V.Peer reviewe

    Measurement of electroweak WZ boson production and search for new physics in WZ + two jets events in pp collisions at √s=13TeV

    Get PDF
    A measurement of WZ electroweak (EW) vector boson scattering is presented. The measurement is performed in the leptonic decay modes WZ→ℓνℓ′ℓ′, where ℓ,ℓ′=e,μ. The analysis is based on a data sample of proton-proton collisions at √s=13 TeV at the LHC collected with the CMS detector and corresponding to an integrated luminosity of 35.9 fb−1. The WZ plus two jet production cross section is measured in fiducial regions with enhanced contributions from EW production and found to be consistent with standard model predictions. The EW WZ production in association with two jets is measured with an observed (expected) significance of 2.2 (2.5) standard deviations. Constraints on charged Higgs boson production and on anomalous quartic gauge couplings in terms of dimension-eight effective field theory operators are also presented
    corecore