5 research outputs found

    Myelin Structures Formed by Thermotropic Smectic Liquid Crystals

    No full text
    We report on transient structures, formed by thermotropic smectic-A liquid crystals, resembling the myelin figures of lyotropic lamellar liquid crystals. The thermotropic myelin structures form during the solubilization of a smectic-A droplet in an aqueous phase containing a cationic surfactant at concentrations above the critical micelle concentration. Similar to the lyotropic myelin figures, the thermotropic myelins appear in an optical microscope as flexible tubelike structures growing at the smectic/aqueous interface. Polarizing microscopy and confocal fluorescence microscopy show that the smectic layers are parallel to the tube surface and form a cylindrically bent arrangement around a central line defect in the tube. We study the growth behavior of this new type of myelins and discuss similarities to and differences from the classical lyotropic myelin figures

    Solubilization of Thermotropic Liquid Crystal Compounds in Aqueous Surfactant Solutions

    No full text
    We study the micellar solubilization of three thermotropic liquid crystal compounds by immersing single drops in aqueous solutions of the ionic surfactant tetradecyltrimethylammonium bromide. For both nematic and isotropic drops, we observe a linear decrease of the drop size with time as well as convective flows and self-propelled motions. The solubilization is accompanied by the appearance of small aqueous droplets within the nematic or isotropic drop. At low temperatures, nematic drops expell small nematic droplets into the aqueous environment. Smectic drops show the spontaneous formation of filament-like structures which resemble the myelin figures observed in lyotropic lamellar systems. In all cases, the liquid crystal drops become completely solubilized, provided the weight fraction of the liquid crystal in the system is not larger than a few percent. The solubilization of the liquid crystal drops is compared with earlier studies of the solubilization of alkanes in ionic surfactant solutions

    Solubilization of Thermotropic Liquid Crystal Compounds in Aqueous Surfactant Solutions

    No full text
    We study the micellar solubilization of three thermotropic liquid crystal compounds by immersing single drops in aqueous solutions of the ionic surfactant tetradecyltrimethylammonium bromide. For both nematic and isotropic drops, we observe a linear decrease of the drop size with time as well as convective flows and self-propelled motions. The solubilization is accompanied by the appearance of small aqueous droplets within the nematic or isotropic drop. At low temperatures, nematic drops expell small nematic droplets into the aqueous environment. Smectic drops show the spontaneous formation of filament-like structures which resemble the myelin figures observed in lyotropic lamellar systems. In all cases, the liquid crystal drops become completely solubilized, provided the weight fraction of the liquid crystal in the system is not larger than a few percent. The solubilization of the liquid crystal drops is compared with earlier studies of the solubilization of alkanes in ionic surfactant solutions

    Direct Visualization of Spatiotemporal Structure of Self-Assembled Colloidal Particles in Electrohydrodynamic Flow of a Nematic Liquid Crystal

    No full text
    Characterization of spatiotemporal dynamics is of vital importance to soft matter systems far from equilibrium. Using a confocal laser scanning microscopy, we directly reveal three-dimensional motion of surface-modified particles in the electrohydrodynamic convection of a nematic liquid crystal. Particularly, visualizing a caterpillar-like motion of a self-assembled colloidal chain demonstrates the mechanism of the persistent transport enabled by the elastic, electric, and hydrodynamic contributions. We also precisely show how the particles’ trajectory is spatially modified by simply changing the surface boundary condition

    Direct Visualization of Spatiotemporal Structure of Self-Assembled Colloidal Particles in Electrohydrodynamic Flow of a Nematic Liquid Crystal

    No full text
    Characterization of spatiotemporal dynamics is of vital importance to soft matter systems far from equilibrium. Using a confocal laser scanning microscopy, we directly reveal three-dimensional motion of surface-modified particles in the electrohydrodynamic convection of a nematic liquid crystal. Particularly, visualizing a caterpillar-like motion of a self-assembled colloidal chain demonstrates the mechanism of the persistent transport enabled by the elastic, electric, and hydrodynamic contributions. We also precisely show how the particles’ trajectory is spatially modified by simply changing the surface boundary condition
    corecore