18 research outputs found
DeepDixon synthetic CT for [18F]FET PET/MRI attenuation correction of post-surgery glioma patients with metal implants
PurposeConventional magnetic resonance imaging (MRI) can for glioma assessment be supplemented by positron emission tomography (PET) imaging with radiolabeled amino acids such as O-(2-[18F]fluoroethyl)-L-tyrosine ([18F]FET), which provides additional information on metabolic properties. In neuro-oncology, patients often undergo brain and skull altering treatment, which is known to challenge MRI-based attenuation correction (MR-AC) methods and thereby impact the simplified semi-quantitative measures such as tumor-to-brain ratio (TBR) used in clinical routine. The aim of the present study was to examine the applicability of our deep learning method, DeepDixon, for MR-AC in [18F]FET PET/MRI scans of a post-surgery glioma cohort with metal implants.MethodsThe MR-AC maps were assessed for all 194 included post-surgery glioma patients (318 studies). The subgroup of 147 patients (222 studies, 200 MBq [18F]FET PET/MRI) with tracer uptake above 1 ml were subsequently reconstructed with DeepDixon, vendor-default atlas-based method, and a low-dose computed tomography (CT) used as reference. The biological tumor volume (BTV) was delineated on each patient by isocontouring tracer uptake above a TBR threshold of 1.6. We evaluated the MR-AC methods using the recommended clinical metrics BTV and mean and maximum TBR on a patient-by-patient basis against the reference with CT-AC.ResultsNinety-seven percent of the studies (310/318) did not have any major artifacts using DeepDixon, which resulted in a Dice coefficient of 0.89/0.83 for tissue/bone, respectively, compared to 0.84/0.57 when using atlas. The average difference between DeepDixon and CT-AC was within 0.2% across all clinical metrics, and no statistically significant difference was found. When using DeepDixon, only 3 out of 222 studies (1%) exceeded our acceptance criteria compared to 72 of the 222 studies (32%) with the atlas method.ConclusionWe evaluated the performance of a state-of-the-art MR-AC method on the largest post-surgical glioma patient cohort to date. We found that DeepDixon could overcome most of the issues arising from irregular anatomy and metal artifacts present in the cohort resulting in clinical metrics within acceptable limits of the reference CT-AC in almost all cases. This is a significant improvement over the vendor-provided atlas method and of particular importance in response assessment
Common, low-frequency, rare, and ultra-rare coding variants contribute to COVID-19 severity
The combined impact of common and rare exonic variants in COVID-19 host genetics is currently insufficiently understood. Here, common and rare variants from whole-exome sequencing data of about 4000 SARS-CoV-2-positive individuals were used to define an interpretable machine-learning model for predicting COVID-19 severity. First, variants were converted into separate sets of Boolean features, depending on the absence or the presence of variants in each gene. An ensemble of LASSO logistic regression models was used to identify the most informative Boolean features with respect to the genetic bases of severity. The Boolean features selected by these logistic models were combined into an Integrated PolyGenic Score that offers a synthetic and interpretable index for describing the contribution of host genetics in COVID-19 severity, as demonstrated through testing in several independent cohorts. Selected features belong to ultra-rare, rare, low-frequency, and common variants, including those in linkage disequilibrium with known GWAS loci. Noteworthily, around one quarter of the selected genes are sex-specific. Pathway analysis of the selected genes associated with COVID-19 severity reflected the multi-organ nature of the disease. The proposed model might provide useful information for developing diagnostics and therapeutics, while also being able to guide bedside disease management. © 2021, The Author(s)
Internationalisering genom att samarbeta med utlÀndska mellanhÀnder
Internationalisering genom mellanhÀnder Àr ett vanligt sÀtt för smÄ och medelstora företag att expandera sin verksamhet till nya marknader. Orsaken Àr att expansion görs möjlig till nya marknader genom bryggning av distanser samt den relativt lÄga finansiella risken som internationalisering genom mellanhÀnder innebÀr. Resurser att expandera organiskt Àr nÄgot som smÄ och medelstora företag ofta inte har. Det saknas forskning som förklarar hur framgÄngsrika mellanhandssamarbeten uppnÄs och mÄnga företag misslyckas eller nÄr inte full potential. VÄrt syfte med studien Àr att skapa förstÄelse för de faktorer som pÄverkar ett framgÄngsrikt samarbete med utlÀndska mellanhÀnder. Inledande intervjuer och genomgÄng av teori visade att identifiering av bra mellanhÀnder, kontroll och vidareutveckling av relationen Àr viktiga faktorer för framgÄngsrika mellanhandssamarbeten. Med detta som utgÄngspunkt skapade vi en enkÀt för att undersöka vilken erfarenhet svenska internationaliserande smÄ och medelstora företag har. En modell baserad pÄ svaren pÄ enkÀtfrÄgorna som redovisar faktorerna och deras förhÄllning till framgÄng finns presenterad i slutsatserna