302 research outputs found
Measuring the Impact of a BSE Announcement on U.S. Retail Beef Sales: A Time-Series Analysis
On December 23, 2003, Agriculture Secretary Ann M. Veneman announced that the United States Department of Agriculture had diagnosed the first U.S. case of bovine spongiform encephalopathy (BSE), commonly known as “mad cow disease.†This study uses supermarket sales data to analyze the effect of the BSE announcement on U.S. retail beef sales, finding a statistically significant disruption of sales. In addition, we develop a forecast of retail beef sales revenues in the hypothetical absence of BSE. The forecast implies that the BSE announcement may have reduced domestic retail beef revenues in excess of $11 billion in the post-BSE period.ARIMA models, BSE, mad cow disease, U.S. retail beef sales, Health Economics and Policy, Livestock Production/Industries,
Statistical thermodynamics for a non-commutative special relativity: Emergence of a generalized quantum dynamics
There ought to exist a description of quantum field theory which does not
depend on an external classical time. To achieve this goal, in a recent paper
we have proposed a non-commutative special relativity in which space-time and
matter degrees of freedom are treated as classical matrices with arbitrary
commutation relations, and a space-time line element is defined using a trace.
In the present paper, following the theory of Trace Dynamics, we construct a
statistical thermodynamics for the non-commutative special relativity, and show
that one arrives at a generalized quantum dynamics in which space and time are
non-classical and have an operator status. In a future work, we will show how
standard quantum theory on a classical space-time background is recovered from
here.Comment: 21 pages. arXiv admin note: text overlap with arXiv:1106.091
On Di\'osi-Penrose criterion of gravity-induced quantum collapse
It is shown that the Di\'osi-Penrose criterion of gravity-induced quantum
collapse may be inconsistent with the discreteness of space-time, which is
generally considered as an indispensable element in a complete theory of
quantum gravity. Moreover, the analysis also suggests that the discreteness of
space-time may result in rapider collapse of the superposition of energy
eigenstates than required by the Di\'osi-Penrose criterion.Comment: 5 pages, no figure
Photon Splitting in a Strong Magnetic Field: Recalculation and Comparison With Previous Calculations
We recalculate the amplitude for photon splitting in a strong magnetic field
below the pair production threshold, using the worldline path integral variant
of the Bern--Kosower formalism. Numerical comparison (using programs that we
have made available for public access on the Internet) shows that the results
of the recalculation are identical to the earlier calculations of Adler and
later of Stoneham, and to the recent recalculation by Baier, Milstein, and
Shaisultanov.Comment: Revtex, 9 pages, no figure
The effect of spontaneous collapses on neutrino oscillations
We compute the effect of collapse models on neutrino oscillations. The effect
of the collapse is to modify the evolution of the `spatial' part of the wave
function, which indirectly amounts to a change on the flavor components. In
many respects, this phenomenon is similar to neutrino propagation through
matter. For the analysis we use the mass proportional CSL model, and perform
the calculation to second order perturbation theory. As we will show, the CSL
prediction is very small - mainly due to the very small mass of neutrinos - and
practically undetectable.Comment: 24 pages, RevTeX. Updated versio
Zero modes, beta functions and IR/UV interplay in higher-loop QED
We analyze the relation between the short-distance behavior of quantum field
theory and the strong-field limit of the background field formalism, for QED
effective Lagrangians in self-dual backgrounds, at both one and two loop. The
self-duality of the background leads to zero modes in the case of spinor QED,
and these zero modes must be taken into account before comparing the
perturbative beta function coefficients and the coefficients of the
strong-field limit of the effective Lagrangian. At one-loop this is familiar
from instanton physics, but we find that at two-loop the role of the zero
modes, and the interplay between IR and UV effects in the renormalization, is
quite different. Our analysis is motivated in part by the remarkable simplicity
of the two-loop QED effective Lagrangians for a self-dual constant background,
and we also present here a new independent derivation of these two-loop
results.Comment: 15 pages, revtex
Two-loop self-dual Euler-Heisenberg Lagrangians (II): Imaginary part and Borel analysis
We analyze the structure of the imaginary part of the two-loop
Euler-Heisenberg QED effective Lagrangian for a constant self-dual background.
The novel feature of the two-loop result, compared to one-loop, is that the
prefactor of each exponential (instanton) term in the imaginary part has itself
an asymptotic expansion. We also perform a high-precision test of Borel
summation techniques applied to the weak-field expansion, and find that the
Borel dispersion relations reproduce the full prefactor of the leading
imaginary contribution.Comment: 28 pp, 6 eps figure
Unital Quantum Channels - Convex Structure and Revivals of Birkhoff's Theorem
The set of doubly-stochastic quantum channels and its subset of mixtures of
unitaries are investigated. We provide a detailed analysis of their structure
together with computable criteria for the separation of the two sets. When
applied to O(d)-covariant channels this leads to a complete characterization
and reveals a remarkable feature: instances of channels which are not in the
convex hull of unitaries can return to it when either taking finitely many
copies of them or supplementing with a completely depolarizing channel. In
these scenarios this implies that a channel whose noise initially resists any
environment-assisted attempt of correction can become perfectly correctable.Comment: 31 page
New Insights into White-Light Flare Emission from Radiative-Hydrodynamic Modeling of a Chromospheric Condensation
(abridged) The heating mechanism at high densities during M dwarf flares is
poorly understood. Spectra of M dwarf flares in the optical and
near-ultraviolet wavelength regimes have revealed three continuum components
during the impulsive phase: 1) an energetically dominant blackbody component
with a color temperature of T 10,000 K in the blue-optical, 2) a smaller
amount of Balmer continuum emission in the near-ultraviolet at lambda 3646
Angstroms and 3) an apparent pseudo-continuum of blended high-order Balmer
lines. These properties are not reproduced by models that employ a typical
"solar-type" flare heating level in nonthermal electrons, and therefore our
understanding of these spectra is limited to a phenomenological interpretation.
We present a new 1D radiative-hydrodynamic model of an M dwarf flare from
precipitating nonthermal electrons with a large energy flux of erg
cm s. The simulation produces bright continuum emission from a
dense, hot chromospheric condensation. For the first time, the observed color
temperature and Balmer jump ratio are produced self-consistently in a
radiative-hydrodynamic flare model. We find that a T 10,000 K
blackbody-like continuum component and a small Balmer jump ratio result from
optically thick Balmer and Paschen recombination radiation, and thus the
properties of the flux spectrum are caused by blue light escaping over a larger
physical depth range compared to red and near-ultraviolet light. To model the
near-ultraviolet pseudo-continuum previously attributed to overlapping Balmer
lines, we include the extra Balmer continuum opacity from Landau-Zener
transitions that result from merged, high order energy levels of hydrogen in a
dense, partially ionized atmosphere. This reveals a new diagnostic of ambient
charge density in the densest regions of the atmosphere that are heated during
dMe and solar flares.Comment: 50 pages, 2 tables, 13 figures. Accepted for publication in the Solar
Physics Topical Issue, "Solar and Stellar Flares". Version 2 (June 22, 2015):
updated to include comments by Guest Editor. The final publication is
available at Springer via http://dx.doi.org/10.1007/s11207-015-0708-
- …