21 research outputs found

    Microenvironment‐induced restoration of cohesive growth associated with focal activation of P ‐cadherin expression in lobular breast carcinoma metastatic to the colon

    Get PDF
    Invasive lobular carcinoma (ILC) is a special breast cancer type characterized by noncohesive growth and E‐cadherin loss. Focal activation of P‐cadherin expression in tumor cells that are deficient for E‐cadherin occurs in a subset of ILCs. Switching from an E‐cadherin deficient to P‐cadherin proficient status (EPS) partially restores cell–cell adhesion leading to the formation of cohesive tubular elements. It is unknown what conditions control EPS. Here, we report on EPS in ILC metastases in the large bowel. We reviewed endoscopic colon biopsies and colectomy specimens from a 52‐year‐old female (index patient) and of 18 additional patients (reference series) diagnosed with metastatic ILC in the colon. EPS was assessed by immunohistochemistry for E‐cadherin and P‐cadherin. CDH1 /E‐cadherin mutations were determined by next‐generation sequencing. The index patient's colectomy showed transmural metastatic ILC harboring a CDH1 /E‐cadherin p.Q610* mutation. ILC cells displayed different growth patterns in different anatomic layers of the colon wall. In the tunica muscularis propria and the tela submucosa, ILC cells featured noncohesive growth and were E‐cadherin‐negative and P‐cadherin‐negative. However, ILC cells invading the mucosa formed cohesive tubular elements in the intercryptal stroma of the lamina propria mucosae. Inter‐cryptal ILC cells switched to a P‐cadherin‐positive phenotype in this microenvironmental niche. In the reference series, colon mucosa infiltration was evident in 13 of 18 patients, one of which showed intercryptal EPS and conversion to cohesive growth as described in the index patient. The large bowel is a common metastatic site in ILC. In endoscopic colon biopsies, the typical noncohesive growth of ILC may be concealed by microenvironment‐induced EPS and conversion to cohesive growth

    Identification of differentially expressed microRNAs in human male breast cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The discovery of small non-coding RNAs and the subsequent analysis of microRNA expression patterns in human cancer specimens have provided completely new insights into cancer biology. Genetic and epigenetic data indicate oncogenic or tumor suppressor function of these pleiotropic regulators. Therefore, many studies analyzed the expression and function of microRNA in human breast cancer, the most frequent malignancy in females. However, nothing is known so far about microRNA expression in male breast cancer, accounting for approximately 1% of all breast cancer cases.</p> <p>Methods</p> <p>The expression of 319 microRNAs was analyzed in 9 primary human male breast tumors and in epithelial cells from 15 male gynecomastia specimens using fluorescence-labeled bead technology. For identification of differentially expressed microRNAs data were analyzed by cluster analysis and selected statistical methods.</p> <p>Expression levels were validated for the most up- or down-regulated microRNAs in this training cohort using real-time PCR methodology as well as in an independent test cohort comprising 12 cases of human male breast cancer.</p> <p>Results</p> <p>Unsupervised cluster analysis separated very well male breast cancer samples and control specimens according to their microRNA expression pattern indicating cancer-specific alterations of microRNA expression in human male breast cancer. miR-21, miR519d, miR-183, miR-197, and miR-493-5p were identified as most prominently up-regulated, miR-145 and miR-497 as most prominently down-regulated in male breast cancer.</p> <p>Conclusions</p> <p>Male breast cancer displays several differentially expressed microRNAs. Not all of them are shared with breast cancer biopsies from female patients indicating male breast cancer specific alterations of microRNA expression.</p

    Microenvironment-induced restoration of cohesive growth associated with focal activation of P-cadherin expression in lobular breast carcinoma metastatic to the colon

    Get PDF
    Invasive lobular carcinoma (ILC) is a special breast cancer type characterized by noncohesive growth and E-cadherin loss. Focal activation of P-cadherin expression in tumor cells that are deficient for E-cadherin occurs in a subset of ILCs. Switching from an E-cadherin deficient to P-cadherin proficient status (EPS) partially restores cell–cell adhesion leading to the formation of cohesive tubular elements. It is unknown what conditions control EPS. Here, we report on EPS in ILC metastases in the large bowel. We reviewed endoscopic colon biopsies and colectomy specimens from a 52-year-old female (index patient) and of 18 additional patients (reference series) diagnosed with metastatic ILC in the colon. EPS was assessed by immunohistochemistry for E-cadherin and P-cadherin. CDH1/E-cadherin mutations were determined by next-generation sequencing. The index patient's colectomy showed transmural metastatic ILC harboring a CDH1/E-cadherin p.Q610* mutation. ILC cells displayed different growth patterns in different anatomic layers of the colon wall. In the tunica muscularis propria and the tela submucosa, ILC cells featured noncohesive growth and were E-cadherin-negative and P-cadherin-negative. However, ILC cells invading the mucosa formed cohesive tubular elements in the intercryptal stroma of the lamina propria mucosae. Inter-cryptal ILC cells switched to a P-cadherin-positive phenotype in this microenvironmental niche. In the reference series, colon mucosa infiltration was evident in 13 of 18 patients, one of which showed intercryptal EPS and conversion to cohesive growth as described in the index patient. The large bowel is a common metastatic site in ILC. In endoscopic colon biopsies, the typical noncohesive growth of ILC may be concealed by microenvironment-induced EPS and conversion to cohesive growth

    Is Upregulation of BCL2 a Determinant of Tumor Development Driven by Inactivation of CDH1/E-Cadherin?

    Get PDF
    <div><p>Inactivation of <i>CDH1</i>, encoding E-cadherin, promotes cancer initiation and progression. According to a newly proposed molecular mechanism, loss of E-cadherin triggers an upregulation of the anti-apoptotic oncoprotein BCL2. Conversely, reconstitution of E-cadherin counteracts overexpression of BCL2. This reciprocal regulation is thought to be critical for early tumor development. We determined the relevance of this new concept in human infiltrating lobular breast cancer (ILBC), the prime tumor entity associated with <i>CDH1</i> inactivation. BCL2 expression was examined in human ILBC cell lines (IPH-926, MDA-MB-134, SUM-44) harboring deleterious <i>CDH1</i> mutations. To test for an intact regulatory axis between E-cadherin and BCL2, wild-type E-cadherin was reconstituted in ILBC cells by ectopic expression. Moreover, BCL2 and E-cadherin were evaluated in primary invasive breast cancers and in synchronous lobular carcinomas <i>in situ</i> (LCIS). MDA-MB-134 and IPH-926 showed little or no BCL2 expression, while SUM-44 ILBC cells were BCL2-positive. Reconstitution of E-cadherin failed to impact on BCL2 expression in all cell lines tested. Primary ILBCs were almost uniformly E-cadherin-negative (97%) and were frequently BCL2-negative (46%). When compared with an appropriate control group, ILBCs showed a trend towards an increased frequency of BCL2-negative cases (<i>P = </i>0.064). In terminal duct-lobular units affected by LCIS, the E-cadherin-negative neoplastic component showed a similar or a reduced BCL2-immunoreactivity, when compared with the adjacent epithelium. In conclusion, upregulation of BCL2 is not involved in lobular breast carcinogenesis and is unlikely to represent an important determinant of tumor development driven by <i>CDH1</i> inactivation.</p></div

    Primary ILBCs lack E-cadherin expression and are frequently BCL2-negative.

    No full text
    <p>(<b>A</b>) Representative immunohistochemical stainings of two primary ILBCs (left, middle) and one primary IDBC (right) for E-cadherin (Ecad) and BCL2, as performed on TMAs. An overview of the tumor cores embedded in the TMAs is shown on the left side of each cases and a detail photomicrograph (magnification, ×400) is shown on the right side of each case. (<b>B</b>) Comparison of the frequency of BCL2-positive/−negative cases in ILBCs versus IDBCs. Statistical significance was determined with Fisher’s exact test. (<b>C</b>) Comparison of BCL2 positive/−negative cases in ILBCs <i>versus</i> ER-positive IDBCs.</p

    Tumor cell line characteristics.

    No full text
    1<p>origin from ILBC proven by genetic comparison with the corresponding primary ILBC.</p>2<p>origin from ILBC proposed <i>ex post</i> based on molecular features, corresponding primary tumor remained uncharacterized ILBC; infiltrating lobular breast cancer, PABC; papillary breast cancer, homo; homozygous, meth.; aberrant methylation of the <i>CDH1</i> promoter, neg; negative, pos; positive, na; not assessed.</p

    Similar or reduced BCL2 immunoreactivity in LCIS compared with the adjacent mammary epithelium.

    No full text
    <p>(<b>A</b>) Representative photomicrographs showing two LCIS lesions characterized by either similar (left, case #1) or reduced (right, case #10) BCL2 immunoreactivity compared with the adjacent E-cadherin-positive epithelium. HE stained sections are shown on top. Serial sections subjected to immunohistochemical staining of E-cadherin (Ecad) and BCL2 are shown below. (<b>B</b>) Overview on BCL2 immunoreactivity in LCIS lesions of n = 11 patients. At least three TDLUs affected by LCIS were considered per case, but showed essentially the same staining characteristics (not shown). A color scale indicative of the IRS is included on the right side.</p

    Validation of the functional activity of the E-cadherin construct.

    No full text
    <p>(<b>A</b>) Fluorescent imaging of cells subjected to ectopic expression of EGFP- or Ecad-EGFP showing the relocation of p120-catenin to the cell membrane in Ecad-EGFP-positive cells. (<b>B</b>) Fluorescent imaging showing the relocation of Kaiso to the nucleus. Representative photomicrographs were taken from experiments with the E-cadherin-deficient IPH-926 ILBC cell line. (<b>C</b>) Increased calcium-dependent cell-cell adhesion in E-cadherin-deficient IPH-926 ILBC cells transiently transfected Ecad-EGFP. The cell aggregation index (CAI) was determined by FACS analysis as described in the “Material and Methods” section.</p

    ERBB2 mutation frequency in lobular breast cancer with pleomorphic histology or high-risk characteristics by molecular expression profiling

    No full text
    HER2-positive breast cancer is defined by amplification or overexpression of the HER2/ERBB2 oncogene and accounts for about 15% of breast cancer cases. Somatic mutation of ERBB2 is an alternative mechanism, by which activation of HER2 signaling can occur. ERBB2 mutation has been associated with invasive lobular breast cancer (ILBC). This study investigates the frequency and phenotype of ILBC harboring mutated ERBB2. The ERBB2 mutation status was determined by next generation sequencing and/or pyrosequencing in n = 106 ILBCs, including n = 86 primary or locally recurrent tumors and n = 20 metastases from visceral organs, soft tissue, or skin. Immunohistochemical characteristics were determined using tissue microarrays. This series was enriched for ILBCs with pleomorphic histology and/or high-risk expression profiles (Oncotype DX, recurrence score RS > 25). Nearly all specimens were E-cadherin-negative (99%), estrogen receptor (ER)-positive (92%), and lacked ERBB2 overexpression (96%). ERBB2 mutations (p.V777L, p.L755S, p.S310F) were identified in 5/106 (5%) cases. ERBB2-mutated cases included 2/86 (2%) primary tumors and 3/20 (15%) metastases (P = 0.045). ERBB2-mutated cases were associated with loss of ER (2/7, 29%, P = 0.035) and histological grade 3 (4/34, 12%, P = 0.023), but not with solid growth (3/31, 10%, P = 0.148) or pleomorphic histology (2/27, 7%, P = 0.599). No ERBB2 mutation was detected in ILBCs with RS > 25 (0/22, 0%). In 10 patients with multiple matched specimens (n = 25), the ERBB2 mutational status was always concordant. In summary, a small subset of ILBCs harbors potentially actionable ERBB2 mutations. In ERBB2-mutated ILBCs, no association with pleomorphic histology was found
    corecore