4,839 research outputs found

    Detecting compact binary coalescences with seedless clustering

    Get PDF
    Compact binary coalescences are a promising source of gravitational waves for second-generation interferometric gravitational-wave detectors. Although matched filtering is the optimal search method for well-modeled systems, alternative detection strategies can be used to guard against theoretical errors (e.g., involving new physics and/or assumptions about spin/eccentricity) while providing a measure of redundancy. In previous work, we showed how "seedless clustering" can be used to detect long-lived gravitational-wave transients in both targeted and all-sky searches. In this paper, we apply seedless clustering to the problem of low-mass (Mtotal≤10M⊙M_\text{total}\leq10M_\odot) compact binary coalescences for both spinning and eccentric systems. We show that seedless clustering provides a robust and computationally efficient method for detecting low-mass compact binaries

    A Metropolis-Hastings algorithm for extracting periodic gravitational wave signals from laser interferometric detector data

    Full text link
    The Markov chain Monte Carlo methods offer practical procedures for detecting signals characterized by a large number of parameters and under conditions of low signal-to-noise ratio. We present a Metropolis-Hastings algorithm capable of inferring the spin and orientation parameters of a neutron star from its periodic gravitational wave signature seen by laser interferometric detector

    Correlated noise in networks of gravitational-wave detectors: subtraction and mitigation

    Get PDF
    One of the key science goals of advanced gravitational-wave detectors is to observe a stochastic gravitational-wave background. However, recent work demonstrates that correlated magnetic fields from Schumann resonances can produce correlated strain noise over global distances, potentially limiting the sensitivity of stochastic background searches with advanced detectors. In this paper, we estimate the correlated noise budget for the worldwide Advanced LIGO network and conclude that correlated noise may affect upcoming measurements. We investigate the possibility of a Wiener filtering scheme to subtract correlated noise from Advanced LIGO searches, and estimate the required specifications. We also consider the possibility that residual correlated noise remains following subtraction, and we devise an optimal strategy for measuring astronomical parameters in the presence of correlated noise. Using this new formalism, we estimate the loss of sensitivity for a broadband, isotropic stochastic background search using 1 yr of LIGO data at design sensitivity. Given our current noise budget, the uncertainty with which LIGO can estimate energy density will likely increase by a factor of ~4--if it is impossible to achieve significant subtraction. Additionally, narrowband cross-correlation searches may be severely affected at low frequencies f < 45 Hz without effective subtraction.Comment: 16 pages, 8 figure

    Analysis of casino table game tipping by Comdex conventioneers

    Full text link
    This study analyzed the mean tips earned per table game dealer of a mega-resort casino located on the Las Vegas strip during Comdex, a large annual computer convention located in Las Vegas. Members of the media and gaming authorities have claimed that Comdex conventioneers do not gamble or tip as much as most convention attendees, yet no substantiated and documented explanation has been offered to explain why. This study hypothesized that Comdex conventioneers have the programmer personality, which is low in the personality dimensions of neuroticism and extraversion. Since the amount tipped has been shown to positively correlate with high levels of neuroticism and extraversion, lower levels of tip revenue should be observed if the programmer personality prevails among Comdex conventioneers. However, the results of the investigation failed to find lower mean tips earned per dealer during Comdex over a three year period
    • …
    corecore