282 research outputs found

    Modeling magnetospheric fields in the Jupiter system

    Full text link
    The various processes which generate magnetic fields within the Jupiter system are exemplary for a large class of similar processes occurring at other planets in the solar system, but also around extrasolar planets. Jupiter's large internal dynamo magnetic field generates a gigantic magnetosphere, which is strongly rotational driven and possesses large plasma sources located deeply within the magnetosphere. The combination of the latter two effects is the primary reason for Jupiter's main auroral ovals. Jupiter's moon Ganymede is the only known moon with an intrinsic dynamo magnetic field, which generates a mini-magnetosphere located within Jupiter's larger magnetosphere including two auroral ovals. Ganymede's magnetosphere is qualitatively different compared to the one from Jupiter. It possesses no bow shock but develops Alfv\'en wings similar to most of the extrasolar planets which orbit their host stars within 0.1 AU. New numerical models of Jupiter's and Ganymede's magnetospheres presented here provide quantitative insight into the processes that maintain these magnetospheres. Jupiter's magnetospheric field is approximately time-periodic at the locations of Jupiter's moons and induces secondary magnetic fields in electrically conductive layers such as subsurface oceans. In the case of Ganymede, these secondary magnetic fields influence the oscillation of the location of its auroral ovals. Based on dedicated Hubble Space Telescope observations, an analysis of the amplitudes of the auroral oscillations provides evidence that Ganymede harbors a subsurface ocean. Callisto in contrast does not possess a mini-magnetosphere, but still shows a perturbed magnetic field environment. Callisto's ionosphere and atmospheric UV emission is different compared to the other Galilean satellites as it is primarily been generated by solar photons compared to magnetospheric electrons.Comment: Chapter for Book: Planetary Magnetis

    Spiral magnetism, spin flop, and pressure induced ferromagnetism in the negative charge transfer gap insulator Sr2FeO4

    Get PDF
    Iron IV oxides are strongly correlated materials with negative charge transfer energy negative Delta , and exhibit peculiar electronic and magnetic properties such as topological helical spin structures in themetallic cubic perovskite SrFeO3. Here, the spin structure of the layered negative Delta insulator Sr2FeO4 was studied by powder neutron diffraction in zero field and magnetic fields up to 6.5 T. Below TN 56K, Sr2FeO4 adopts an elliptical cycloidal spin structure with modulated magnetic moments between 1.9 and 3.5 amp; 956;B and a propagation vector k amp; 964;, amp; 964;, 0 with amp; 964; 0.137. With increasing magnetic field the spin structure undergoes a spin flop transition near 5 T. Synchrotron 57Fe Mössbauer spectroscopy reveals that the spin spiral transforms to a ferromagnetic structure at pressures between 5 and 8 GPa, just in the pressure range where a Raman active phonon nonintrinsic to the K2NiF4 type crystal structure vanishes. These results indicate an insulating ground state which is stabilized by a hidden structural distortion and differs from the charge disproportionation in other Fe IV oxide

    The Business Model: Recent Developments and Future Research

    Get PDF
    This article provides a broad and multifaceted review of the received literature on business models in which the authors examine the business model concept through multiple subject-matter lenses. The review reveals that scholars do not agree on what a business model is and that the literature is developing largely in silos, according to the phenomena of interest of the respective researchers. However, the authors also found emerging common themes among scholars of business models. Specifically, (1) the business model is emerging as a new unit of analysis; (2) business models emphasize a system-level, holistic approach to explaining how firms “do business”; (3) firm activities play an important role in the various conceptualizations of business models that have been proposed; and (4) business models seek to explain how value is created, not just how it is captured. These emerging themes could serve as catalysts for a more unified study of business models

    Search for gravitational waves from Scorpius X-1 in the second Advanced LIGO observing run with an improved hidden Markov model

    Get PDF
    We present results from a semicoherent search for continuous gravitational waves from the low-mass x-ray binary Scorpius X-1, using a hidden Markov model (HMM) to track spin wandering. This search improves on previous HMM-based searches of LIGO data by using an improved frequency domain matched filter, the J-statistic, and by analyzing data from Advanced LIGO's second observing run. In the frequency range searched, from 60 to 650 Hz, we find no evidence of gravitational radiation. At 194.6 Hz, the most sensitive search frequency, we report an upper limit on gravitational wave strain (at 95% confidence) of h095%=3.47×10-25 when marginalizing over source inclination angle. This is the most sensitive search for Scorpius X-1, to date, that is specifically designed to be robust in the presence of spin wandering. © 2019 American Physical Society

    Erratum: "A Gravitational-wave Measurement of the Hubble Constant Following the Second Observing Run of Advanced LIGO and Virgo" (2021, ApJ, 909, 218)

    Get PDF
    [no abstract available

    Search for Gravitational Waves Associated with Gamma-Ray Bursts Detected by Fermi and Swift during the LIGO-Virgo Run O3b

    Get PDF
    We search for gravitational-wave signals associated with gamma-ray bursts (GRBs) detected by the Fermi and Swift satellites during the second half of the third observing run of Advanced LIGO and Advanced Virgo (2019 November 1 15:00 UTC-2020 March 27 17:00 UTC). We conduct two independent searches: A generic gravitational-wave transients search to analyze 86 GRBs and an analysis to target binary mergers with at least one neutron star as short GRB progenitors for 17 events. We find no significant evidence for gravitational-wave signals associated with any of these GRBs. A weighted binomial test of the combined results finds no evidence for subthreshold gravitational-wave signals associated with this GRB ensemble either. We use several source types and signal morphologies during the searches, resulting in lower bounds on the estimated distance to each GRB. Finally, we constrain the population of low-luminosity short GRBs using results from the first to the third observing runs of Advanced LIGO and Advanced Virgo. The resulting population is in accordance with the local binary neutron star merger rate. © 2022. The Author(s). Published by the American Astronomical Society
    • …
    corecore