5 research outputs found

    The future of tundra carbon storage in Greenland:sensitivity to climate and plant trait changes

    No full text
    Abstract The continuous change in observed key indicators such as increasing nitrogen deposition, temperatures and precipitation will have marked but uncertain consequences for the ecosystem carbon (C) sink-source functioning of the Arctic. Here, we use multiple in-situ data streams measured by the Greenland Ecosystem Monitoring programme in tight connection with the Soil-Plant-Atmosphere model and climate projections from the high-resolution HIRHAM5 regional model. We apply this modelling framework with focus on two climatically different tundra sites in Greenland (Zackenberg and Kobbefjord) to assess how sensitive the net C uptake will expectedly be under warmer and wetter conditions across the 21st century and pin down the relative contribution to the overall C sink strength from climate versus plant trait variability. Our results suggest that temperatures (5–7.7 °C), total precipitation (19–110 %) and vapour pressure deficit will increase (32–36 %), while shortwave radiation will decline (6–9 %) at both sites by 2100 under the RCP8.5 scenario. Such a combined effect will, on average, intensify the net C uptake by 9–10 g C m−2 year−1 at both sites towards the end of 2100, but Zackenberg is expected to have more than twice the C sink strength capacity of Kobbefjord. Our sensitivity analysis not only reveals that plant traits are the most sensitive parameters controlling the net C exchange in both sites at the beginning and end of the century, but also that the projected increase in the net C uptake will likely be similarly influenced by future changes in climate and existing local nutrient conditions. A series of experiments forcing realistic changes in plant nitrogen status at both sites corroborates this hypothesis. This work proves the unique synergy between monitoring data and numerical models to assist robust model calibration/validation and narrow uncertainty ranges and ultimately produce more reliable C cycle projections in understudied regions such as Greenland

    Radiation, soil water content, and temperature effects on carbon cycling in an alpine swamp meadow of the northeastern Qinghai–Tibetan Plateau

    No full text
    Abstract Predicted intensified climate warming will likely alter the ecosystem net carbon (C) uptake of the Qinghai–Tibetan Plateau (QTP). Variations in C sink–source responses to climate warming have been linked to water availability; however, the mechanisms by which net C uptake responds to soil water content in saturated swamp meadow ecosystems remain unclear. To explore how soil moisture and other environmental drivers modulate net C uptake in the QTP, field measurements were conducted using the eddy covariance technique in 2014, 2015, 2017, and 2018. The alpine swamp meadow presented in this study was a persistent and strong C sink of CO₂ (−168.0 ± 62.5 g C m⁻² yr⁻¹, average ± standard deviation) across the entire 4-year study period. A random forest machine-learning analysis suggested that the diurnal and seasonal variations of net ecosystem exchange (NEE) and gross primary productivity (GPP) were regulated by temperature and net radiation. Ecosystem respiration (Re), however, was found mainly regulated by the variability of soil water content (SWC) at different temporal aggregations, followed by temperature, the second contributing driver. We further explored how Re is controlled by nearly saturated soil moisture and temperature comparing two different periods featuring almost identical temperatures and significant differences on SWC and vice versa. Our data suggest that, despite the relatively abundant water supply, periods with a substantial decrease in SWC or increase in temperature produced higher Re and therefore weakened the C sink strength. Our results reveal that nearly saturated soil conditions during the growing seasons can help maintain lower ecosystem respiration rates and thus enhance the overall C sequestration capacity in this alpine swamp meadow. We argue that soil respiration and subsequent ecosystem C sink magnitude in alpine swamp meadows could likely be affected by future changes in soil hydrological conditions caused by permafrost degradation or accelerated thawing–freezing cycling due to climate warming

    A mobile observatory powered by sun and wind for near real time measurements of atmospheric, glacial, terrestrial, limnic and coastal oceanic conditions in remote off-grid areas

    No full text
    Abstract Climate change is rapidly altering the Arctic environment. Although long-term environmental observations have been made at a few locations in the Arctic, the incomplete coverage from ground stations is a main limitation to observations in these remote areas. Here we present a wind and sun powered multi-purpose mobile observatory (ARC-MO) that enables near real time measurements of air, ice, land, rivers, and marine parameters in remote off-grid areas. Two test units were constructed and placed in Northeast Greenland where they have collected data from cabled and wireless instruments deployed in the environment since late summer 2021. The two units can communicate locally via WiFi (units placed 25 km apart) and transmit near-real time data globally over satellite. Data are streamed live and accessible from (https://gios.org). The cost of one mobile observatory unit is c. 304.000€. These test units demonstrate the possibility for integrative and automated environmental data collection in remote coastal areas and could serve as models for a proposed global observatory system
    corecore