23 research outputs found

    Full security of quantum key distribution from no-signaling constraints

    Full text link
    We analyze a cryptographic protocol for generating a distributed secret key from correlations that violate a Bell inequality by a sufficient amount, and prove its security against eavesdroppers, constrained only by the assumption that any information accessible to them must be compatible with the non-signaling principle. The claim holds with respect to the state-of-the-art security definition used in cryptography, known as universally-composable security. The non-signaling assumption only refers to the statistics of measurement outcomes depending on the choices of measurements; hence security is independent of the internal workings of the devices --- they do not even need to follow the laws of quantum theory. This is relevant for practice as a correct and complete modeling of realistic devices is generally impossible. The techniques developed are general and can be applied to other Bell inequality-based protocols. In particular, we provide a scheme for estimating Bell-inequality violations when the samples are not independent and identically distributed.Comment: 15 pages, 2 figur

    News on Penguins

    Full text link
    We summarize recent theoretical developments in the field of radiative and semileptonic penguin decays.Comment: 5 page

    Device independent quantum key distribution secure against coherent attacks with memoryless measurement devices

    Full text link
    Device independent quantum key distribution aims to provide a higher degree of security than traditional QKD schemes by reducing the number of assumptions that need to be made about the physical devices used. The previous proof of security by Pironio et al. applies only to collective attacks where the state is identical and independent and the measurement devices operate identically for each trial in the protocol. We extend this result to a more general class of attacks where the state is arbitrary and the measurement devices have no memory. We accomplish this by a reduction of arbitrary adversary strategies to qubit strategies and a proof of security for qubit strategies based on the previous proof by Pironio et al. and techniques adapted from Renner.Comment: 13 pages. Expanded main proofs with more detail, miscellaneous edits for clarit

    Secure certification of mixed quantum states with application to two-party randomness generation

    Get PDF
    We investigate sampling procedures that certify that an arbitrary quantum state on nn subsystems is close to an ideal mixed state φn\varphi^{\otimes n} for a given reference state φ\varphi, up to errors on a few positions. This task makes no sense classically: it would correspond to certifying that a given bitstring was generated according to some desired probability distribution. However, in the quantum case, this is possible if one has access to a prover who can supply a purification of the mixed state. In this work, we introduce the concept of mixed-state certification, and we show that a natural sampling protocol offers secure certification in the presence of a possibly dishonest prover: if the verifier accepts then he can be almost certain that the state in question has been correctly prepared, up to a small number of errors. We then apply this result to two-party quantum coin-tossing. Given that strong coin tossing is impossible, it is natural to ask "how close can we get". This question has been well studied and is nowadays well understood from the perspective of the bias of individual coin tosses. We approach and answer this question from a different---and somewhat orthogonal---perspective, where we do not look at individual coin tosses but at the global entropy instead. We show how two distrusting parties can produce a common high-entropy source, where the entropy is an arbitrarily small fraction below the maximum (except with negligible probability)

    On asymptotic continuity of functions of quantum states

    Full text link
    A useful kind of continuity of quantum states functions in asymptotic regime is so-called asymptotic continuity. In this paper we provide general tools for checking if a function possesses this property. First we prove equivalence of asymptotic continuity with so-called it robustness under admixture. This allows us to show that relative entropy distance from a convex set including maximally mixed state is asymptotically continuous. Subsequently, we consider it arrowing - a way of building a new function out of a given one. The procedure originates from constructions of intrinsic information and entanglement of formation. We show that arrowing preserves asymptotic continuity for a class of functions (so-called subextensive ones). The result is illustrated by means of several examples.Comment: Minor corrections, version submitted for publicatio

    "Squashed Entanglement" - An Additive Entanglement Measure

    Full text link
    In this paper, we present a new entanglement monotone for bipartite quantum states. Its definition is inspired by the so-called intrinsic information of classical cryptography and is given by the halved minimum quantum conditional mutual information over all tripartite state extensions. We derive certain properties of the new measure which we call "squashed entanglement": it is a lower bound on entanglement of formation and an upper bound on distillable entanglement. Furthermore, it is convex, additive on tensor products, and superadditive in general. Continuity in the state is the only property of our entanglement measure which we cannot provide a proof for. We present some evidence, however, that our quantity has this property, the strongest indication being a conjectured Fannes type inequality for the conditional von Neumann entropy. This inequality is proved in the classical case.Comment: 8 pages, revtex4. v2 has some more references and a bit more discussion, v3 continuity discussion extended, typos correcte

    Secure certification of mixed quantum states with application to two-party randomness generation

    Get PDF
    We investigate sampling procedures that certify that an arbitrary quantum state on n subsystems is close to an ideal mixed state ⊗ for a given reference state , up to errors on a few positions. This task makes no sense classically: it would correspond to certifying that a given bitstring was generated according to some desired probability distribution. However, in the quantum case, this is possible if one has access to a prover who can supply a purification of the mixed state. In this work, we introduce the concept of mixed-state certification, and we show that a natural sampling protocol offers secure certification in the presence of a possibly dishonest prover: if the verifier accepts then he can be almost certain that the state in question has been correctly prepared, up to a small number of errors. We then apply this result to two-party quantum coin-tossing. Given that strong coin tossing is impossible, it is natural to ask “how close can we get”. This question has been well studied and is nowadays well understood from the perspective of the bias of individual coin tosses. We approach and answer this question from a different—and somewhat orthogonal—perspective, where we do not look at individual coin tosses but at the global entropy instead. We show how two distrusting parties can produce a common high-entropy source, where the entropy is an arbitrarily small fraction below the maximum

    All Inequalities for the Relative Entropy

    Full text link
    The relative entropy of two n-party quantum states is an important quantity exhibiting, for example, the extent to which the two states are different. The relative entropy of the states formed by reducing two n-party to a smaller number mm of parties is always less than or equal to the relative entropy of the two original n-party states. This is the monotonicity of relative entropy. Using techniques from convex geometry, we prove that monotonicity under restrictions is the only general inequality satisfied by relative entropies. In doing so we make a connection to secret sharing schemes with general access structures. A suprising outcome is that the structure of allowed relative entropy values of subsets of multiparty states is much simpler than the structure of allowed entropy values. And the structure of allowed relative entropy values (unlike that of entropies) is the same for classical probability distributions and quantum states.Comment: 15 pages, 3 embedded eps figure

    Faithful Squashed Entanglement

    Get PDF
    Squashed entanglement is a measure for the entanglement of bipartite quantum states. In this paper we present a lower bound for squashed entanglement in terms of a distance to the set of separable states. This implies that squashed entanglement is faithful, that is, strictly positive if and only if the state is entangled. We derive the bound on squashed entanglement from a bound on quantum conditional mutual information, which is used to define squashed entanglement and corresponds to the amount by which strong subadditivity of von Neumann entropy fails to be saturated. Our result therefore sheds light on the structure of states that almost satisfy strong subadditivity with equality. The proof is based on two recent results from quantum information theory: the operational interpretation of the quantum mutual information as the optimal rate for state redistribution and the interpretation of the regularised relative entropy of entanglement as an error exponent in hypothesis testing. The distance to the set of separable states is measured by the one-way LOCC norm, an operationally-motivated norm giving the optimal probability of distinguishing two bipartite quantum states, each shared by two parties, using any protocol formed by local quantum operations and one-directional classical communication between the parties. A similar result for the Frobenius or Euclidean norm follows immediately. The result has two applications in complexity theory. The first is a quasipolynomial-time algorithm solving the weak membership problem for the set of separable states in one-way LOCC or Euclidean norm. The second concerns quantum Merlin-Arthur games. Here we show that multiple provers are not more powerful than a single prover when the verifier is restricted to one-way LOCC operations thereby providing a new characterisation of the complexity class QMA.Comment: 24 pages, 1 figure, 1 table. Due to an error in the published version, claims have been weakened from the LOCC norm to the one-way LOCC nor

    Device-independent quantum key distribution secure against collective attacks

    Full text link
    Device-independent quantum key distribution (DIQKD) represents a relaxation of the security assumptions made in usual quantum key distribution (QKD). As in usual QKD, the security of DIQKD follows from the laws of quantum physics, but contrary to usual QKD, it does not rely on any assumptions about the internal working of the quantum devices used in the protocol. We present here in detail the security proof for a DIQKD protocol introduced in [Phys. Rev. Lett. 98, 230501 (2008)]. This proof exploits the full structure of quantum theory (as opposed to other proofs that exploit the no-signalling principle only), but only holds again collective attacks, where the eavesdropper is assumed to act on the quantum systems of the honest parties independently and identically at each round of the protocol (although she can act coherently on her systems at any time). The security of any DIQKD protocol necessarily relies on the violation of a Bell inequality. We discuss the issue of loopholes in Bell experiments in this context.Comment: 25 pages, 3 figure
    corecore