245 research outputs found
Effect of childhood victimization on occupational prestige and income trajectories
Background
Violence toward children (childhood victimization) is a major public health problem, with long-term consequences on economic well-being. The purpose of this study was to determine whether childhood victimization affects occupational prestige and income in young adulthood. We hypothesized that young adults who experienced more childhood victimizations would have less prestigious jobs and lower incomes relative to those with no victimization history. We also explored the pathways in which childhood victimization mediates the relationships between background variables, such as parent’s educational impact on the socioeconomic transition into adulthood.
Methods
A nationally representative sample of 8,901 young adults aged 18–28 surveyed between 1999–2009 from the National Longitudinal Survey of Youth 1997 (NLSY) were analyzed. Covariate-adjusted multivariate linear regression and path models were used to estimate the effects of victimization and covariates on income and prestige levels and on income and prestige trajectories. After each participant turned 18, their annual 2002 Census job code was assigned a yearly prestige score based on the 1989 General Social Survey, and their annual income was calculated via self-reports. Occupational prestige and annual income are time-varying variables measured from 1999–2009. Victimization effects were tested for moderation by sex, race, and ethnicity in the multivariate models.
Results
Approximately half of our sample reported at least one instance of childhood victimization before the age of 18. Major findings include 1) childhood victimization resulted in slower income and prestige growth over time, and 2) mediation analyses suggested that this slower prestige and earnings arose because victims did not get the same amount of education as non-victims.
Conclusions
Results indicated that the consequences of victimization negatively affected economic success throughout young adulthood, primarily by slowing the growth in prosperity due to lower education levels
The High-Acceptance Dielectron Spectrometer HADES
HADES is a versatile magnetic spectrometer aimed at studying dielectron
production in pion, proton and heavy-ion induced collisions. Its main features
include a ring imaging gas Cherenkov detector for electron-hadron
discrimination, a tracking system consisting of a set of 6 superconducting
coils producing a toroidal field and drift chambers and a multiplicity and
electron trigger array for additional electron-hadron discrimination and event
characterization. A two-stage trigger system enhances events containing
electrons. The physics program is focused on the investigation of hadron
properties in nuclei and in the hot and dense hadronic matter. The detector
system is characterized by an 85% azimuthal coverage over a polar angle
interval from 18 to 85 degree, a single electron efficiency of 50% and a vector
meson mass resolution of 2.5%. Identification of pions, kaons and protons is
achieved combining time-of-flight and energy loss measurements over a large
momentum range. This paper describes the main features and the performance of
the detector system
Study of e+,e− production in elementary and nuclear collisions near the production threshold with HADES
HADES is a second generation experiment designed to study dielectron production in proton, pion, and heavy ion induced reactions at the GSI accelerator facility in Darmstadt. The physics programme of HADES is focused on in-medium properties of the light vector mesons. In this contribution we present status of the HADES experiment, demonstrate its capability to identify rare dielectron signal, show first experimental results obtained from C+C reactions at 2 A GeV and shortly discuss physics programme of up-coming experimental runs. © 2004 Elsevier B.V. All rights reserved. 53 1 49 58 Cited By :1
RNA interference approaches for treatment of HIV-1 infection
HIV/AIDS is a chronic and debilitating disease that cannot be cured with current antiretroviral drugs. While combinatorial antiretroviral therapy (cART) can potently suppress HIV-1 replication and delay the onset of AIDS, viral mutagenesis often leads to viral escape from multiple drugs. In addition to the pharmacological agents that comprise cART drug cocktails, new biological therapeutics are reaching the clinic. These include gene-based therapies that utilize RNA interference (RNAi) to silence the expression of viral or host mRNA targets that are required for HIV-1 infection and/or replication. RNAi allows sequence-specific design to compensate for viral mutants and natural variants, thereby drastically expanding the number of therapeutic targets beyond the capabilities of cART. Recent advances in clinical and preclinical studies have demonstrated the promise of RNAi therapeutics, reinforcing the concept that RNAi-based agents might offer a safe, effective, and more durable approach for the treatment of HIV/AIDS. Nevertheless, there are challenges that must be overcome in order for RNAi therapeutics to reach their clinical potential. These include the refinement of strategies for delivery and to reduce the risk of mutational escape. In this review, we provide an overview of RNAi-based therapies for HIV-1, examine a variety of combinatorial RNAi strategies, and discuss approaches for ex vivo delivery and in vivo delivery
Plasma–liquid interactions: a review and roadmap
Plasma–liquid interactions represent a growing interdisciplinary area of research involving plasma science, fluid dynamics, heat and mass transfer, photolysis, multiphase chemistry and aerosol science. This review provides an assessment of the state-of-the-art of this multidisciplinary area and identifies the key research challenges. The developments in diagnostics, modeling and further extensions of cross section and reaction rate databases that are necessary to address these challenges are discussed. The review focusses on non-equilibrium plasmas
Recommended from our members
Track A Basic Science
Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/138319/1/jia218438.pd
Measurement of the polar-angle distribution of leptons from W boson decay as a function of the W transverse momentum in proton-antiproton collisions at sqrt{s}=1.8 TeV
We present a measurement of the coefficient alpha_2 of the leptonic
polar-angle distribution from W boson decays, as a function of the W transverse
momentum. The measurement uses an 80+/-4 pb^{-1} sample of proton-antiproton
collisions at sqrt{s}=1.8 TeV collected by the CDF detector and includes data
from both the W->e+nu and W->mu+nu decay channels. We fit the W boson
transverse mass distribution to a set of templates from a Monte Carlo event
generator and detector simulation in several ranges of the W transverse
momentum. The measurement agrees with the Standard Model expectation, whereby
the ratio of longitudinally to transversely polarized W bosons, in the
Collins-Soper W rest frame, increases with the W transverse momentum at a rate
of approximately 15% per 10 GeV/c.Comment: 47 pages, 16 figures, submitted to Physical Review
Measurement of the Ratio of b Quark Production Cross Sections in Antiproton-Proton Collisions at 630 GeV and 1800 GeV
We report a measurement of the ratio of the bottom quark production cross
section in antiproton-proton collisions at 630 GeV to 1800 GeV using bottom
quarks with transverse momenta greater than 10.75 GeV identified through their
semileptonic decays and long lifetimes. The measured ratio
sigma(630)/sigma(1800) = 0.171 +/- .024 +/- .012 is in good agreement with
next-to-leading order (NLO) quantum chromodynamics (QCD)
- …