378 research outputs found
<i>P. berghei</i> telomerase subunit TERT is essential for parasite survival
Telomeres define the ends of chromosomes protecting eukaryotic cells from chromosome instability and eventual cell death. The complex regulation of telomeres involves various proteins including telomerase, which is a specialized ribonucleoprotein responsible for telomere maintenance. Telomeres of chromosomes of malaria parasites are kept at a constant length during blood stage proliferation. The 7-bp telomere repeat sequence is universal across different Plasmodium species (GGGTTT/CA), though the average telomere length varies. The catalytic subunit of telomerase, telomerase reverse transcriptase (TERT), is present in all sequenced Plasmodium species and is approximately three times larger than other eukaryotic TERTs. The Plasmodium RNA component of TERT has recently been identified in silico. A strategy to delete the gene encoding TERT via double cross-over (DXO) homologous recombination was undertaken to study the telomerase function in P. berghei. Expression of both TERT and the RNA component (TR) in P. berghei blood stages was analysed by Western blotting and Northern analysis. Average telomere length was measured in several Plasmodium species using Telomere Restriction Fragment (TRF) analysis. TERT and TR were detected in blood stages and an average telomere length of ~950 bp established. Deletion of the tert gene was performed using standard transfection methodologies and we show the presence of tert− mutants in the transfected parasite populations. Cloning of tert- mutants has been attempted multiple times without success. Thorough analysis of the transfected parasite populations and the parasite obtained from extensive parasite cloning from these populations provide evidence for a so called delayed death phenotype as observed in different organisms lacking TERT. The findings indicate that TERT is essential for P. berghei cell survival. The study extends our current knowledge on telomere biology in malaria parasites and validates further investigations to identify telomerase inhibitors to induce parasite cell death
Recommended from our members
The Role of Animal Models for Research on Severe Malaria
In light of the recent controversies over the role of animal models for research into the development of new treatments for severe malaria, particularly cerebral disease, a group of scientists came together to discuss the relative merits of a range of animal models and their overlap with the complex clinical syndromes of human disease. While it was not possible to fully resolve differences over the utility of the Plasmodium berghei ANKA model of experimental cerebral malaria, the meeting did bring the two research communities closer together to identify further work to provide information needed to validate the model and revitalise the development of other animal models displaying features of human pathology. The driving force behind this was the desire to ensure better translation of experimental findings into effective treatments for severe malaria
Maternally supplied S-acyl-transferase is required for crystalloid organelle formation and transmission of the malaria parasite.
Transmission of the malaria parasite from the mammalian host to the mosquito vector requires the formation of adequately adapted parasite forms and stage-specific organelles. Here we show that formation of the crystalloid-a unique and short-lived organelle of the Plasmodium ookinete and oocyst stage required for sporogony-is dependent on the precisely timed expression of the S-acyl-transferase DHHC10. DHHC10, translationally repressed in female Plasmodium berghei gametocytes, is activated translationally during ookinete formation, where the protein is essential for the formation of the crystalloid, the correct targeting of crystalloid-resident protein LAP2, and malaria parasite transmission
The glutathione biosynthetic pathway of Plasmodium is essential for mosquito transmission
1Infection of red blood cells (RBC) subjects the malaria parasite to oxidative stress. Therefore, efficient antioxidant and redox systems are required to prevent damage by reactive oxygen species. Plasmodium spp. have thioredoxin and glutathione (GSH) systems that are thought to play a major role as antioxidants during blood stage infection. In this report, we analyzed a critical component of the GSH biosynthesis pathway using reverse genetics. Plasmodium berghei parasites lacking expression of gamma-glutamylcysteine synthetase (γ-GCS), the rate limiting enzyme in de novo synthesis of GSH, were generated through targeted gene disruption thus demonstrating, quite unexpectedly, that γ-GCS is not essential for blood stage development. Despite a significant reduction in GSH levels, blood stage forms of pbggcs− parasites showed only a defect in growth as compared to wild type. In contrast, a dramatic effect on development of the parasites in the mosquito was observed. Infection of mosquitoes with pbggcs− parasites resulted in reduced numbers of stunted oocysts that did not produce sporozoites. These results have important implications for the design of drugs aiming at interfering with the GSH redox-system in blood stages and demonstrate that de novo synthesis of GSH is pivotal for development of Plasmodium in the mosquito
Unravelling the immune signature of Plasmodium falciparum transmission-reducing immunity
Infection with Plasmodium can elicit antibodies that inhibit parasite survival in the mosquito, when they are ingested in an infectious blood meal. Here, we determine the transmission-reducing activity (TRA) of naturally acquired antibodies from 648 malaria-exposed individuals using lab-based mosquito-feeding assays. Transmission inhibition is significantly associated with antibody responses to Pfs48/45, Pfs230, and to 43 novel gametocyte proteins assessed by protein microarray. In field-based mosquito-feeding assays the likelihood and rate of mosquito infection are significantly lower for individuals reactive to Pfs48/45, Pfs230 or to combinations of the novel TRA-associated proteins. We also show that naturally acquired purified antibodies against key transmission-blocking epitopes of Pfs48/45 and Pfs230 are mechanistically involved in TRA, whereas sera depleted of these antibodies retain high-level, complement-independent TRA. Our analysis demonstrates that host antibody responses to gametocyte proteins are associated with reduced malaria transmission efficiency from humans to mosquitoes
Replication of Plasmodium in reticulocytes can occur without hemozoin formation, resulting in chloroquine resistance
Most studies on malaria-parasite digestion of hemoglobin (Hb) have been performed using P. falciparum maintained in mature erythrocytes, in vitro. In this study, we examine Plasmodium Hb degradation in vivo in mice, using the parasite P. berghei, and show that it is possible to create mutant parasites lacking enzymes involved in the initial steps of Hb proteolysis. These mutants only complete development in reticulocytes and mature into both schizonts and gametocytes. Hb degradation is severely impaired and large amounts of undigested Hb remains in the reticulocyte cytoplasm and in vesicles in the parasite. The mutants produce little or no hemozoin (Hz), the detoxification by-product of Hb degradation. Further, they are resistant to chloroquine, an antimalarial drug that interferes with Hz formation, but their sensitivity to artesunate, also thought to be dependent on Hb degradation, is retained. Survival in reticulocytes with reduced or absent Hb digestion may imply a novel mechanism of drug resistance. These findings have implications for drug development against human-malaria parasites, such as P. vivax and P. ovale, which develop inside reticulocytes
Towards systematic identification of Plasmodium essential genes by transposon shuttle mutagenesis
After the deciphering of the genome sequences of several Plasmodium species, efforts must turn to elucidating gene function and identifying essential gene products. However, random approaches are lacking and gene targeting is inefficient in Plasmodium. Here, we established shuttle transposon mutagenesis in Plasmodium berghei. We constructed a mini-Tn5 derivative that can transpose into parasite genes cloned in Escherichia coli, providing an efficient means of generating knockout fragments. A 10(4)-fold increase in frequencies of double-crossover homologous recombination in the parasite using a new electroporation technology permits to reproducibly generate pools of distinct mutants after transfection with mini-Tn5-interrupted sequences. The procedure opens the way to the systematic identification of essential genes in Plasmodium
The Plasmodium palmitoyl-S-acyl-transferase DHHC2 is essential for ookinete morphogenesis and malaria transmission
Copyright © 2015, The Author(s). This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/The post-translational addition of C-16 long chain fatty acids to protein cysteine residues is catalysed by palmitoyl-S-acyl-transferases (PAT) and affects the affinity of a modified protein for membranes and therefore its subcellular localisation. In apicomplexan parasites this reversible protein modification regulates numerous biological processes and specifically affects cell motility, and invasion of host cells by Plasmodium falciparum merozoites and Toxoplasma gondii tachyzoites. Using inhibitor studies we show here that palmitoylation is key to transformation of zygotes into ookinetes during initial mosquito infection with P. berghei. We identify DHHC2 as a unique PAT mediating ookinete formation and morphogenesis. Essential for life cycle progression in asexual blood stage parasites and thus refractory to gene deletion analyses, we used promoter swap (ps) methodology to maintain dhhc2 expression in asexual blood stages but down regulate expression in sexual stage parasites and during post-fertilization development of the zygote. The ps mutant showed normal gamete formation, fertilisation and DNA replication to tetraploid cells, but was characterised by a complete block in post-fertilisation development and ookinete formation. Our report highlights the crucial nature of the DHHC2 palmitoyl-S-acyltransferase for transmission of the malaria parasite to the mosquito vector through its essential role for ookinete morphogenesis.FF was supported by European Research Council (ERC-SG 281719) and the EU FP7 research network EVIMalar; JMS by a PhD fellowship grant SFRH/BD/63849/2009 from Fundação para a Ciência e a Tecnologia (FCT) and GRM by FCT grants PTDC/SAU-MIC/122082/2010 and PTDC/BIA-BCM/105610/2008.info:eu-repo/semantics/publishedVersio
Development and application of a positive–negative selectable marker system for use in reverse genetics in Plasmodium
A limitation of transfection of malaria parasites is the availability of only a low number of positive selectable markers for selection of transformed mutants. This is exacerbated for the rodent parasite Plasmodium berghei as selection of mutants is performed in vivo in laboratory rodents. We here report the development and application of a negative selection system based upon transgenic expression of a bifunctional protein (yFCU) combining yeast cytosine deaminase and uridyl phosphoribosyl transferase (UPRT) activity in P.berghei followed by in vivo selection with the prodrug 5-fluorocytosine (5-FC). The combination of yfcu and a positive selectable marker was used to first achieve positive selection of mutant parasites with a disrupted gene in a conventional manner. Thereafter through negative selection using 5-FC, mutants were selected where the disrupted gene had been restored to its original configuration as a result of the excision of the selectable markers from the genome through homologous recombination. This procedure was carried out for a Plasmodium gene (p48/45) encoding a protein involved in fertilization, the function of which had been previously implied through gene disruption alone. Such reversible recombination can therefore be employed for both the rapid analysis of the phenotype by targeted disruption of a gene and further associate phenotype and function by genotype restoration through the use of a single plasmid and a single positive selectable marker. Furthermore the negative selection system may also be adapted to facilitate other procedures such as ‘Hit and Run’ and ‘vector recycling’ which in principle will allow unlimited manipulation of a single parasite clone. This is the first demonstration of the general use of yFCU in combination with a positive selectable marker in reverse genetics approaches and it should be possible to adapt its use to many other biological systems
Referral and collaboration between South African psychiatrists and religious or spiritual advisers: Views from some psychiatrists
Background. Referral between psychiatrists and spiritual workers (e.g. Christian pastoral care workers, traditional healers, imams, rabbis and others) in the heterogeneous South African (SA) society is complicated and requires investigation to establish appropriate norms.
Objective. To capture the views of some local psychiatrists on referral and collaboration between SA psychiatrists and religious or spiritual advisers.
Methods. This explorative qualitative study involved indepth, semistructured interviews with 13 local academic psychiatrists selected through purposive sampling. Each participant had a single interview with the aim of exploring themes related to the referral and collaboration process between psychiatrists and spiritual advisers. Theme content analysis of interview transcripts was done. Results for one of the six identified themes are reported; other results are reported elsewhere.
Results. Within the theme ‘referral and collaboration between psychiatrists and spiritual professionals’, three subthemes were identified: facilitating appropriate referral and intervention for individual users; information sharing and mutual awareness between disciplines; and addressing stigmatisation of users with psychiatric conditions.
Conclusion. Dialogue between psychiatrists and religious or spiritual advisers should be developed on an individual practitioner and facility basis, as well as on an organised basis between representative societies. The process of formalising a relationship between local psychiatrists and different spiritual workers may, however, still have some way to go
- …
