4,297 research outputs found

    Multistep Parametric Processes in Nonlinear Optics

    Full text link
    We present a comprehensive overview of different types of parametric interactions in nonlinear optics which are associated with simultaneous phase-matching of several optical processes in quadratic nonlinear media, the so-called multistep parametric interactions. We discuss a number of possibilities of double and multiple phase-matching in engineered structures with the sign-varying second-order nonlinear susceptibility, including (i) uniform and non-uniform quasi-phase-matched (QPM) periodic optical superlattices, (ii) phase-reversed and periodically chirped QPM structures, and (iii) uniform QPM structures in non-collinear geometry, including recently fabricated two-dimensional nonlinear quadratic photonic crystals. We also summarize the most important experimental results on the multi-frequency generation due to multistep parametric processes, and overview the physics and basic properties of multi-color optical parametric solitons generated by these parametric interactions.Comment: To be published in Progress in Optic

    Constraints on the χ_(c1) versus χ_(c2) polarizations in proton-proton collisions at √s = 8 TeV

    Get PDF
    The polarizations of promptly produced χ_(c1) and χ_(c2) mesons are studied using data collected by the CMS experiment at the LHC, in proton-proton collisions at √s=8  TeV. The χ_c states are reconstructed via their radiative decays χ_c → J/ψγ, with the photons being measured through conversions to e⁺e⁻, which allows the two states to be well resolved. The polarizations are measured in the helicity frame, through the analysis of the χ_(c2) to χ_(c1) yield ratio as a function of the polar or azimuthal angle of the positive muon emitted in the J/ψ → μ⁺μ⁻ decay, in three bins of J/ψ transverse momentum. While no differences are seen between the two states in terms of azimuthal decay angle distributions, they are observed to have significantly different polar anisotropies. The measurement favors a scenario where at least one of the two states is strongly polarized along the helicity quantization axis, in agreement with nonrelativistic quantum chromodynamics predictions. This is the first measurement of significantly polarized quarkonia produced at high transverse momentum

    2D Black Phosphorus: from Preparation to Applications for Electrochemical Energy Storage

    Get PDF
    Black phosphorus (BP) is rediscovered as a 2D layered material. Since its first isolation in 2014, 2D BP has triggered tremendous interest in the fields of condensed matter physics, chemistry, and materials science. Given its unique puckered monolayer geometry, 2D BP displays many unprecedented properties and is being explored for use in numerous applications. The flexibility, large surface area, and good electric conductivity of 2D BP make it a promising electrode material for electrochemical energy storage devices (EESDs). Here, the experimental and theoretical progress of 2D BP is presented on the basis of its preparation methods. The structural and physiochemical properties, air instability, passivation, and EESD applications of 2D BP are discussed systemically. Specifically, the latest research findings on utilizing 2D BP in EESDs, such as lithium‐ion batteries, supercapacitors, and emerging technologies (lithium–sulfur batteries, magnesium‐ion batteries, and sodium‐ion batteries), are summarized. On the basis of the current progress, a few personal perspectives on the existing challenges and future research directions in this developing field are provided
    corecore