2,368 research outputs found

    Natriuretic peptide receptors regulate cytoprotective effects in a human ex vivo 3D/bioreactor model

    Get PDF
    © 2013 Peake et al.; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited

    Road Context-aware Intrusion Detection System for Autonomous Cars

    Full text link
    Security is of primary importance to vehicles. The viability of performing remote intrusions onto the in-vehicle network has been manifested. In regard to unmanned autonomous cars, limited work has been done to detect intrusions for them while existing intrusion detection systems (IDSs) embrace limitations against strong adversaries. In this paper, we consider the very nature of autonomous car and leverage the road context to build a novel IDS, named Road context-aware IDS (RAIDS). When a computer-controlled car is driving through continuous roads, road contexts and genuine frames transmitted on the car's in-vehicle network should resemble a regular and intelligible pattern. RAIDS hence employs a lightweight machine learning model to extract road contexts from sensory information (e.g., camera images and distance sensor values) that are used to generate control signals for maneuvering the car. With such ongoing road context, RAIDS validates corresponding frames observed on the in-vehicle network. Anomalous frames that substantially deviate from road context will be discerned as intrusions. We have implemented a prototype of RAIDS with neural networks, and conducted experiments on a Raspberry Pi with extensive datasets and meaningful intrusion cases. Evaluations show that RAIDS significantly outperforms state-of-the-art IDS without using road context by up to 99.9% accuracy and short response time.Comment: This manuscript presents an intrusion detection system that makes use of road context for autonomous car

    High growth rate 4H-SiC epitaxial growth using dichlorosilane in a hot-wall CVD reactor

    Full text link
    Thick, high quality 4H-SiC epilayers have been grown in a vertical hot-wall chemical vapor deposition system at a high growth rate on (0001) 80 off-axis substrates. We discuss the use of dichlorosilane as the Si-precursor for 4H-SiC epitaxial growth as it provides the most direct decomposition route into SiCl2, which is the predominant growth species in chlorinated chemistries. A specular surface morphology was attained by limiting the hydrogen etch rate until the system was equilibrated at the desired growth temperature. The RMS roughness of the grown films ranged from 0.5-2.0 nm with very few morphological defects (carrots, triangular defects, etc.) being introduced, while enabling growth rates of 30-100 \mum/hr, 5-15 times higher than most conventional growths. Site-competition epitaxy was observed over a wide range of C/Si ratios, with doping concentrations < 1x1014 cm-3 being recorded. X-ray rocking curves indicated that the epilayers were of high crystallinity, with linewidths as narrow as 7.8 arcsec being observed, while microwave photoconductive decay (\muPCD) measurements indicated that these films had high injection (ambipolar) carrier lifetimes in the range of 2 \mus

    Photocatalytic hydroxylation of arylboronic acids using continuous flow reactors

    Get PDF
    The photocatalytic oxidation of mono- and di-substituted arylboronic acids to phenols has been investigated using a continuous flow photoreactor fitted with white LEDs. An EtOH–H2O solvent system accelerated conversion at 2 MPa; whereas reactions at atmospheric pressure allowed for moderately efficient desymmetrisation

    An unusual case of ST-segment elevation myocardial infarction following a late bare-metal stent fracture in a native coronary artery: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>A bare-metal stent fracture as a cause of acute coronary thrombosis and consequently of acute coronary syndrome is a rare clinical event that, to the best of our knowledge, has previously not been reported. A stent fracture is a rare complication arising from percutaneous coronary intervention.</p> <p>Case presentation</p> <p>We present, to the best of our knowledge, the first documented case of ST-segment elevation myocardial infarction in a patient following a late bare-metal stent fracture and thrombosis in a native coronary artery. The patient, a 51-year-old Caucasian man, was treated successfully with primary percutaneous coronary intervention and a new stent implantation.</p> <p>Conclusion</p> <p>A coronary stent fracture is a rare complication that has been described in venous bypass grafts deploying either a drug-eluting stent or a bare-metal stent. Stent fractures rarely occur in coronary arteries. In light of the non-specific presentation of stent fracture, it is also an easily missed complication. Patients may present with a non-specific symptom of angina. The angina could either be stable or unstable as a result of restenosis or in-stent thrombosis, or both. Our case demonstrates the most severe consequences of a bare-metal stent fracture (sudden coronary thrombosis and subsequent myocardial infarction) in a native coronary artery. It was diagnosed angiographically and treated early and effectively.</p

    Genetic analysis of variation in human meiotic recombination

    Get PDF
    The number of recombination events per meiosis varies extensively among individuals. This recombination phenotype differs between female and male, and also among individuals of each gender. In this study, we used high-density SNP genotypes of over 2,300 individuals and their offspring in two datasets to characterize recombination landscape and to map the genetic variants that contribute to variation in recombination phenotypes. We found six genetic loci that are associated with recombination phenotypes. Two of these (RNF212 and an inversion on chromosome 17q21.31) were previously reported in the Icelandic population, and this is the first replication in any other population. Of the four newly identified loci (KIAA1462, PDZK1, UGCG, NUB1), results from expression studies provide support for their roles in meiosis. Each of the variants that we identified explains only a small fraction of the individual variation in recombination. Notably, we found different sequence variants associated with female and male recombination phenotypes, suggesting that they are regulated by different genes. Characterization of genetic variants that influence natural variation in meiotic recombination will lead to a better understanding of normal meiotic events as well as of non-disjunction, the primary cause of pregnancy loss. © 2009 Chowdhury et al

    Imprecise probabilistic estimation of design floods with epistemic uncertainties

    Get PDF
    This is the author accepted manuscript. The final version is available from the publisher via the DOI in this record.An imprecise probabilistic framework for design flood estimation is proposed on the basis of the Dempster-Shafer theory to handle different epistemic uncertainties from data, probability distribution functions and probability distribution parameters. These uncertainties are incorporated in cost-benefit analysis to generate the lower and upper bounds of the total cost for flood control, thus presenting improved information for decision making on design floods. Within the total cost bounds, a new robustness criterion is proposed to select a design flood that can tolerate higher levels of uncertainty. A variance decomposition approach is used to quantify individual and interactive impacts of the uncertainty sources on total cost. Results from three case studies, with 127-, 104- and 54-year flood data sets respectively, show that the imprecise probabilistic approach effectively combines aleatory and epistemic uncertainties from the various sources and provides upper and lower bounds of the total cost. Between the total cost and the robustness of design floods, a clear trade-off which is beyond the information that can be provided by the conventional minimum cost criterion is identified. The interactions among data, distributions and parameters have a much higher contribution than parameters to the estimate of the total cost. It is found that the contributions of the various uncertainty sources and their interactions vary with different flood magnitude, but remain roughly the same with different return periods. This study demonstrates that the proposed methodology can effectively incorporate epistemic uncertainties in cost-benefit analysis of design floods.This study was supported by the National Natural Science Foundation of China (Grant No. 51320105010 and 51279021). The first author gratefully acknowledges the financial support provided by the China Scholarship Council. The authors are deeply indebted to editors, Dr Francesco Serinaldi and another anonymous reviewer for their valuable time and constructive suggestions that greatly improved the quality of this paper. The data of Three Gorges were obtained from the China Three Gorges Corporation. The data of Biliu were obtained from the Biliu reservoir administration. The data of Harbin were obtained from the Harbin hydrology bureau. These data are available as in Supporting Information Data Set which includes Data Set S1, Data Set S2 and Data Set S3. Data Set S1 corresponds to Three Gorges; Data Set S2 corresponds to Biliu; Data Set S3 corresponds to Harbin
    corecore