61 research outputs found

    Relation entre les caractères floraux, le mode de croissance, l'habitat et la pollinisation chez les Araceae

    Full text link
    Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal

    Sélection et polymorphisme chez des grenouilles mimétiques du Pérou (Dendrobatidae)

    Get PDF
    La diversification des signaux aposématiques dans un cadre de mimétisme müllérien est un phénomène intrigant. Alors que la théorie relative à l'aposématisme et au mimétisme suggère l'évolution vers un signal aposématique unique, d'impressionnantes variations peuvent être observées entre les populations, et cela à petite échelle spatiale. Il a été supposé que la variation spatiale des pressions de sélection engendrées par différents prédateurs puisse être à l'origine de ce phénomène. Afin de tester cette hypothèse, nous avons étudié la transition entre deux systèmes géographiques caractérisés par des patrons aposématiques distincts chez des grenouilles mimétiques et toxiques du nord du Pérou (Dendrobatidae) en combinant les outils de génétique des populations aux outils écologiques. Dans chacun de ces systèmes, Ranitomeya imitator vit en sympatrie avec R. ventrimaculata ou R. variabilis. Il s'agit du principal exemple empirique suggérant que dans un cadre de mimétisme müllérien, il n'y a pas convergence des signaux aposématiques des deux espèces, mais plutôt convergence unidirectionnelle où R. imitator, étant polymorphe, imite des espèces monomorphes avec lesquelles elle est sympatrique. Premièrement, les résultats réfutent les prémisses qui suggèrent que R. imitator converge vers le signal aposématique d’une autre espèce. La haute similarité génétique entre les espèces modèles suggère qu'elles ont divergé plus récemment que les populations de R. imitator ou qu'elles sont encore connectées par du flux génique. Ces résultats indiquent que ces espèces ont été identifiées à tort comme des espèces différentes. De fait, l'identification de l'espèce imitatrice basée sur la variabilité phénotypique est invalidée dans ce système puisque R. imitator et R. variabilis/ventrimaculata démontrent la même variabilité. Deuxièmement, nos résultats démontrent que la prédation varie spatialement, autant en intensité qu'en direction, créant ainsi un paysage hétérogène de pressions de sélection. Ainsi, de fortes pressions de prédation stabilisatrice permettent le maintien de l'organisation géographique de différents signaux aposématiques et expliquent l'uniformité de ces signaux ainsi que les relations mimétiques. Par contre, le relâchement temporaire des pressions de prédation permet l'apparition de nouveaux phénotypes aposématiques via les processus évolutifs neutres, conduisant à un haut polymorphisme au niveau de ces populations. L'interaction de ces modes sélectifs nous a permis de démontrer pour la première fois comment la théorie évolutive de Wright (shifting balance theory) permet la diversification adaptative dans un système naturel. Pour conclure, cette étude a permis de mettre en évidence à quel point les systèmes de mimétisme müllérien peuvent être dynamiques. L'alternance spatiale entre les processus évolutifs neutres et la sélection naturelle permet l'émergence de nouveaux phénotypes aposématiques à une échelle locale, ainsi que l'apparition d'une organisation géographique des signaux d'avertissement et des relations de mimétisme müllérien.The diversification of aposematic signals in Müllerian mimicry systems is a puzzling phenomenon. Although aposematism and mimicry are expected to promote uniformity in warning signals, impressive variations may be observed among populations at relatively small spatial scales. It has been suggested that spatial variation in selective pressures caused by predators might be responsible for this phenomenon. In order to test this hypothesis, we studied the transition in the aposematic signals of the mimetic poison-dart frogs of Northern Peru (Dendrobatidae) between two geographical systems characterized by distinct aposematic signals. This was done by combining population genetics and ecological tools. In both systems, Ranitomeya imitator is sympatric with either R. ventrimaculata or R. variabilis. This system is recognized as a rare example in support of the hypothesis for advergence: R. imitator, which is polymorphic, is believed to mimic distinct sympatric monomorphic model species. However, our results do not support the hypothesis for advergence of the aposematic signals by R. imitator. The genetic similarity between the model species suggests that they have diverged more recently than R. imitator populations or that they are still connected by gene flow. These results indicate that these species were misidentified as being different species. As such, the identification of the mimetic species based on phenotypic variability is invalidated in this system, since R. imitator is as variable as R. variabilis/ventrimaculata. Also, our results demonstrate that predation pressure is spatially variable, in both intensity and direction, thus creating a heterogeneous selective landscape. As such, strong and directed stabilizing selective pressures maintain the geographic organisation of aposematic signals and explain phenotypic uniformity and mimetic relationships. Relaxation of these selective pressures enables for the appearance of novel aposematic phenotypes and promotes high phenotypic variability via neutral evolutionary processes. The interaction between these selective regimes has enabled us to demonstrate, and this for the first time, how the Wright’s shifting balance theory of evolution may promote adaptive diversification in a natural system. In conclusion, this study highlights just how dynamic Müllerian mimicry systems can be. The interplay between neutral evolutionary processes and natural selection enables for the predominance of novel aposematic phenotypes at a local scale, and the geographical organisation of warning signals and Müllerian relationships

    Major improvements to the Heliconius melpomene genome assembly used to confirm 10 chromosome fusion events in 6 million years of butterfly evolution

    Get PDF
    The Heliconius butterflies are a widely studied adaptive radiation of 46 species spread across Central and South America, several of which are known to hybridize in the wild. Here, we present a substantially improved assembly of the Heliconius melpomene genome, developed using novel methods that should be applicable to improving other genome assemblies produced using short read sequencing. First, we whole-genome-sequenced a pedigree to produce a linkage map incorporating 99% of the genome. Second, we incorporated haplotype scaffolds extensively to produce a more complete haploid version of the draft genome. Third, we incorporated ~20x coverage of Pacific Biosciences sequencing, and scaffolded the haploid genome using an assembly of this long-read sequence. These improvements result in a genome of 795 scaffolds, 275 Mb in length, with an N50 length of 2.1 Mb, an N50 number of 34, and with 99% of the genome placed, and 84% anchored on chromosomes. We use the new genome assembly to confirm that the Heliconius genome underwent 10 chromosome fusions since the split with its sister genus Eueides, over a period of about 6 million yr

    Genomic architecture and introgression shape a butterfly radiation

    Get PDF
    We use twenty de novo genome assemblies to probe the speciation history and architecture of gene flow in rapidly radiating Heliconius butterflies. Our tests to distinguish incomplete lineage sorting from introgression indicate that gene flow has obscured several ancient phylogenetic relationships in this group over large swathes of the genome. Introgressed loci are underrepresented in low recombination and gene-rich regions, consistent with the purging of foreign alleles more tightly linked to incompatibility loci. We identify a hitherto unknown inversion that traps a color pattern switch locus. We infer that this inversion was transferred between lineages via introgression and is convergent with a similar rearrangement in another part of the genus. These multiple de novo genome sequences enable improved understanding of the importance of introgression and selective processes in adaptive radiation

    Dryad data

    No full text
    The number of new predation attempts by avian and unknown predators and the models removed from the analysis for each model phenotype (Ranitomeya imitator and brown frog) after each 24h observation in both the lowland and highland sites. Models removed from the analysis had either disappeared or were destroyed by ants or roaches. At the beginning of the experiment 300 models per phenotype were placed in each site

    Data from: The role of predators in maintaining the geographic organization of aposematic signals

    No full text
    Selective predation of aposematic signals is expected to promote phenotypic uniformity. But while uniform within a population, numerous species display impressive variations in warning signals among adjacent populations. Predators from different localities learning to avoid distinct signals while performing intense selection on others are thus expected to maintain such a geographic organization. We tested this assumption by placing clay frog models, representing distinct color morphs of the Peruvian poison-dart frog Ranitomeya imitator and a non conspicuous frog, reciprocally between adjacent localities. In each locality, avian predators were able to discriminate between warning signals; the adjacent exotic morph suffered up to four times more attacks than the local one and two times more than the non conspicuous phenotype. Moreover, predation attempts on the exotic morph quickly decreased to almost nil, suggesting rapid learning. This experiment offers direct evidence for the existence of different predator communities performing localized homogenizing selection on distinct aposematic signals

    Warning signals are under positive frequency- dependent selection in nature

    No full text
    International audiencePositive frequency-dependent selection (FDS) is a selection regime where the fitness of a phenotype increases with its frequency, and it is thought to underlie important adaptive strategies resting on signaling and communication. However, whether and how positive FDS truly operates in nature remains unknown, which hampers our understanding of signal diversity. Here, we test for positive FDS operating on the warning color patterns of chemically defended butterflies forming multiple coexisting mimicry assemblages in the Amazon. Using malleable prey models placed in localities showing differences in the relative frequencies of warningly colored prey, we demonstrate that the efficiency of a warning signal increases steadily with its local frequency in the natural community, up to a threshold where protection stabilizes. The shape of this relationship is consistent with the direct effect of the local abundance of each warning signal on the corresponding avoidance knowledge of the local predator community. This relationship, which differs from purifying selection acting on each mimetic pattern, indicates that predator knowledge, integrated over the entire community, is saturated only for the most common warning signals. In contrast, among the well-established warning signals present in local prey assemblages, most are incompletely known to local predators and enjoy incomplete protection. This incomplete predator knowledge should generate strong benefits to life history traits that enhance warning efficiency by increasing the effective frequency of prey visible to predators. Strategies such as gregariousness or niche convergence between comimics may therefore readily evolve through their effects on predator knowledge and warning efficiency

    Data from: Wright's shifting balance theory and the diversification of aposematic signals

    No full text
    Despite accumulating evidence for selection within natural systems, the importance of random genetic drift opposing Wright's and Fisher's views of evolution continue to be a subject of controversy. The geographical diversification of aposematic signals appears to be a suitable system to assess the factors involved in the process of adaptation since both theories were independently proposed to explain this phenomenon. In the present study, the effects of drift and selection were assessed from population genetics and predation experiments on poison-dart frogs, Ranitomaya imitator, of Northern Peru. We specifically focus on the transient zone between two distinct aposematic signals. In contrast to regions where high predation maintains a monomorphic aposematic signal, the transient zones are characterized by lowered selection and a high phenotypic diversity. As a result, the diversification of phenotypes may occur via genetic drift without a significant loss of fitness. These new phenotypes may then colonize alternative habitats if successfully recognized and avoided by predators. This study highlights the interplay between drift and selection as determinant processes in the adaptive diversification of aposematic signals. Results are consistent with the expectations of the Wright's shifting balance theory and represent, to our knowledge, the first empirical demonstration of this highly contested theory in a natural system
    corecore