11 research outputs found

    Paclitaxel loading in PLGA nanospheres affected the in vitro drug cell accumulation and antiproliferative activity

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>PTX is one of the most widely used drug in oncology due to its high efficacy against solid tumors and several hematological cancers. PTX is administered in a formulation containing 1:1 Cremophor<sup>® </sup>EL (polyethoxylated castor oil) and ethanol, often responsible for toxic effects. Its encapsulation in colloidal delivery systems would gain an improved targeting to cancer cells, reducing the dose and frequency of administration.</p> <p>Methods</p> <p>In this paper PTX was loaded in PLGA NS. The activity of PTX-NS was assessed in vitro against thyroid, breast and bladder cancer cell lines in cultures. Cell growth was evaluated by MTS assay, intracellular NS uptake was performed using coumarin-6 labelled NS and the amount of intracellular PTX was measured by HPLC.</p> <p>Results</p> <p>NS loaded with 3% PTX (w/w) had a mean size < 250 nm and a polydispersity index of 0.4 after freeze-drying with 0.5% HP-Cyd as cryoprotector. PTX encapsulation efficiency was 30% and NS showed a prolonged drug release in vitro. An increase of the cytotoxic effect of PTX-NS was observed with respect to free PTX in all cell lines tested.</p> <p>Conclusion</p> <p>These findings suggest that the greater biological effect of PTX-NS could be due to higher uptake of the drug inside the cells as shown by intracellular NS uptake and cell accumulation studies.</p

    Clinical practice guideline on the optimal radiotherapeutic management of brain metastases

    Get PDF
    BACKGROUND: An evidence-based clinical practice guideline on the optimal radiotherapeutic management of single and multiple brain metastases was developed. METHODS: A systematic review and meta-analysis was performed. The Supportive Care Guidelines Group formulated clinical recommendations based on their interpretation of the evidence. External review of the report by Ontario practitioners was obtained through a mailed survey, and final approval was obtained from Cancer Care Ontario's Practice Guidelines Coordinating Committee (PGCC). RESULTS: One hundred and nine Ontario practitioners responded to the survey (return rate 44%). Ninety-six percent of respondents agreed with the interpretation of the evidence, and 92% agreed that the report should be approved. Minor revisions were made based on feedback from external reviewers and the PGCC. The PGCC approved the final practice guideline report. CONCLUSIONS: For adult patients with a clinical and radiographic diagnosis of brain metastases (single or multiple) we conclude that, • Surgical excision should be considered for patients with good performance status, minimal or no evidence of extracranial disease, and a surgically accessible single brain metastasis. • Postoperative whole brain radiotherapy (WBRT) should be considered to reduce the risk of tumour recurrence for patients who have undergone resection of a single brain metastasis. • Radiosurgery boost with WBRT may improve survival in select patients with unresectable single brain metastases. • The whole brain should be irradiated for multiple brain metastases. Standard dose-fractionation schedules are 3000 cGy in 10 fractions or 2000 cGy in 5 fractions. • Radiosensitizers are not recommended outside research studies. • In select patients, radiosurgery may be considered as boost therapy with WBRT to improve local tumour control. Radiosurgery boost may improve survival in select patients. • Chemotherapy as primary therapy or chemotherapy with WBRT remains experimental. • Supportive care is an option but there is a lack of Level 1 evidence as to which subsets of patients should be managed with supportive care alone. Qualifying statements addressing factors to consider when applying these recommendations are provided in the full report. The rigorous development, external review and approval process has resulted in a practice guideline that is strongly endorsed by Ontario practitioners
    corecore