186 research outputs found
Boundary-layer receptivity due to distributed surface imperfections of a deterministic or random nature
Acoustic receptivity of a Blasius boundary layer in the presence of distributed surface irregularities is investigated analytically. It is shown that, out of the entire spatial spectrum of the surface irregularities, only a small band of Fourier components can lead to an efficient conversion of the acoustic input at any given frequency to an unstable eigenmode of the boundary layer flow. The location, and width, of this most receptive band of wavenumbers corresponds to a relative detuning of O(R sub l.b.(exp -3/8)) with respect to the lower-neutral instability wavenumber at the frequency under consideration, R sub l.b. being the Reynolds number based on a typical boundary-layer thickness at the lower branch of the neutral stability curve. Surface imperfections in the form of discrete mode waviness in this range of wavenumbers lead to initial instability amplitudes which are O(R sub l.b.(exp 3/8)) larger than those caused by a single, isolated roughness element. In contrast, irregularities with a continuous spatial spectrum produce much smaller instability amplitudes, even compared to the isolated case, since the increase due to the resonant nature of the response is more than that compensated for by the asymptotically small band-width of the receptivity process. Analytical expressions for the maximum possible instability amplitudes, as well as their expectation for an ensemble of statistically irregular surfaces with random phase distributions, are also presented
Localized and distributed boundary-layer receptivity to convected unsteady wake in free stream
Receptivity to a model convected disturbance in the presence of localized and distributed variations in wall geometry and wall-suction velocity is examined. The model free-stream disturbance corresponds to the time-harmonic wake of a vibrating ribbon that is placed at a suitable distance above the surface of a thin airfoil. The advantages of using this disturbance for experiments on receptivity to convected disturbances are outlined. A brief parametric study is presented for a flat-plate boundary layer. The study quantifies the effect of wake position as well as wake width; in addition, it should be helpful in the choice of an optimal setting for a controlled experiment of the above type, which the above parametric study shows as feasible
Long-wavelength asymptotics of unstable crossflow modes, including the effect of surface curvature
Stationary vortex instabilities with wavelengths significantly larger than the thickness of the underlying three-dimensional boundary layer are studied with asymptotic methods. The long-wavelength Rayleigh modes are locally neutral and are aligned with the direction of the local inviscid streamline. For a spanwise wave number Beta much less than 1, the spatial growth rate of these vortices is O(Beta(exp 3/2)). When Beta becomes O(R(exp -1/7)), the viscous correction associated with a thin sublayer near the surface modifies the inviscid growth rate to the leading order. As Beta is further decreased through this regime, viscous effects assume greater significance and dominate the growth-rate behavior. The spatial growth rate becomes comparable to the real part of the wave number when Beta = O(R(exp -1/4)). At this stage, the disturbance structure becomes fully viscous-inviscid interactive and is described by the triple-deck theory. For even smaller values of Beta, the vortex modes become nearly neutral again and align themselves with the direction of the wall-shear stress. Thus, the study explains the progression of the crossflow-vortex structure from the inflectional upper branch mode to nearly neutral long-wavelength modes that are aligned with the wall-shear direction
Effect of nonzero surface admittance on receptivity and stability of compressible boundary layer
The effect of small-amplitude short-scale variations in surface admittance on the acoustic receptivity and stability of two-dimensional compressible boundary layers is examined. In the linearized limit, the two problems are shown to be related both physically and mathematically. This connection between the two problems is used, in conjunction with some previously reported receptivity results, to infer the modification of stability properties due to surface permeability. Numerical calculations are carried out for a self-similar flat-plate boundary layer at subsonic and low supersonic speeds. Variations in mean suction velocity at the perforated admittance surface can also induce receptivity to an acoustic wave. For a subsonic boundary layer, the dependence of admittance-induced receptivity on the acoustic-wave orientation is significantly different from that of the receptivity produced via mean suction variation. The admittance-induced receptivity is generally independent of the angle of acoustic incidence, except in a relatively narrow range of upstream-traveling waves for which the receptivity becomes weaker. However, this range of angles is precisely that for which the suction-induced receptivity tends to be large. At supersonic Mach numbers, the admittance-induced receptivity to slow acoustic models is relatively weaker than that in the case of the fast acoustic modes. We also find that purely real values for the surface admittance tend to have a destabilizing effect on the evolution of an instability wave over a slightly permeable surface. The limits on the validity of the linearized approximation are also assessed in one specific case
Distributed acoustic receptivity in laminar flow control configurations
A model problem related to distributed receptivity to free-stream acoustic waves in laminar flow control (LFC) configurations is studied, within the Orr-Sommerfield framework, by a suitable extension of the Goldstein-Ruban theory for receptivity due to localized disturbances on the airfoil surface. The results, thus, complement the earlier work on the receptivity produced by local variations in the surface suction and/or surface admittance. In particular, we show that the cumulative effect of the distributed receptivity can be substantially larger than that of a single, isolated suction strip or slot. Furthermore, even if the receptivity is spread out over very large distances, the most effective contributions come from a relatively short region in vicinity of the lower branch of the neutral stability curve. The length scale of this region is intermediate to that of the mean of these two length scales. Finally, it is found that the receptivity is effectively dominated by a narrow band of Fourier components from the wall-suction and admittance distributions, roughly corresponding to a detuning of less than ten percent with respect to the neutral instability wavenumber at the frequency under consideration. The results suggest that the drop-off in receptivity magnitudes away from the resonant wavenumber is nearly independent of the frequency parameter
Roughness-induced generation of crossflow vortices in three-dimensional boundary layers
The receptivity theory of Goldstein and Ruban is extended within the nonasymptotic (quasi-parallel) framework of Zavol'skii et al to predict the roughness-induced generation of stationary and nonstationary instability waves in three-dimensional, incompressible boundary layers. The influence of acoustic-wave orientation, as well as that of different types of roughness geometries, including isolated roughness elements, periodic arrays, and two-dimensional lattices of compact roughness shapes, as well as random, but spatially homogeneous roughness distributions, is examined. The parametric study for the Falkner-Skan-Cooke family of boundary layers supports our earlier conjecture that the initial amplitudes of roughness-induced stationary vortices are likely to be significantly larger than the amplitudes of similarly induced nonstationary vortices in the presence of acoustic disturbances in the free stream. Maximum unsteady receptivity occurs when the acoustic velocity fluctuation is aligned with the wavenumber vector of the unsteady vortex mode. On the other hand, roughness arrays that are oriented somewhere close to the group velocity direction are likely to produce higher instability amplitudes. Limitations of the nonasymptotic theory are discussed, and future work is suggested
A finite Reynolds number approach for the prediction of boundary layer receptivity in localized regions
Previous theoretical work on the boundary layer receptivity problem has utilized large Reynolds number asymptotic theories, thus being limited to a narrow part of the frequency - Reynolds number domain. An alternative approach is presented for the prediction of localized instability generation which has a general applicability, and also accounts for finite Reynolds number effects. This approach is illustrated for the case of Tollmien-Schlichting wave generation in a Blasius boundary layer due to the interaction of a free stream acoustic wave with a region of short scale variation in the surface boundary condition. The specific types of wall inhomogeneities studied are: regions of short scale variations in wall suction, wall admittance, and wall geometry (roughness). Extensive comparison is made between the results of the finite Reynolds number approach and previous asymptotic predictions, which also suggests an alternative way of using the latter at Reynolds numbers of interest in practice
Transition Delay via Vortex Generators in a Hypersonic Boundary Layer at Flight Conditions
The potential of realizable, stationary streaks undergoing non-modal growth to stabilize a hypersonic boundary-layer flow and, subsequently, delay the laminar-turbulent transition onset, is studied via numerical computations. The geometry and flow conditions are selected to match a relevant trajectory location from the ascent phase of the HIFiRE-1 flight experiment, namely, a 7-degree half-angle cone with 2.5 mm nose radius, freestream Mach number of 5.30, freestream unit Reynolds number equal to 13.42 x 10(exp 6)/m, and wall-to-adiabatic temperature ratio of approximately 0.35 over most of the test article. This paper investigates flow modifications induced by wall-mounted vortex generators (VGs), followed by an analysis of the modal instability of the perturbed, streaky boundary-layer flow. Results are presented both for a single array of VGs that was designed on the basis of optimal growth theory and for a VG configuration involving two separate arrays with opposite orientations that ware designed to provide staged control of flow instabilities while simultaneously reducing the amplification of streak instabilities resulting from the control devices. Earlier research had shown that the onset of transition during the HIFiRE-1 flight experiment, which did not include any control devices, correlated with an amplification factor of N = 14.7 for the planar Mack modes. If one assumes that the transition N -factor is not affected by the introduction of the VGs, then the control configurations based on a single array of VGs and two separate arrays would result in a transition delay of 17% and 40%, respectively. These findings suggest a passive flow control s to induce streaks that would delay transition in hypersonic boundary dominated by Mack-mode instabilities
On the spatial evolution of long-wavelength Goertler vortices governed by a viscous-inviscid interaction
The generation of long-wavelength, viscous-inviscid interactive Goertler vortices is studied in the linear regime by numerically solving the time-dependent governing equations. It is found that time-dependent surface deformations, which assume a fixed nonzero shape at large times, generate steady Goertler vortices that amplify in the downstream direction. Thus, the Goertler instability in this regime is shown to be convective in nature, contrary to the earlier findings of Ruban and Savenkov. The disturbance pattern created by steady and streamwise-elongated surface obstacles on a concave surface is examined in detail, and also contrasted with the flow pattern due to roughness elements with aspect ratio of order unity on flat surfaces. Finally, the applicability of the Briggs-Bers criterion to unstable physical systems of this type is questioned by providing a counterexample in the form of the inviscid limit of interactive Goertler vortices
Effect of Distributed Patch of Smooth Roughness Elements on Transition in a High-Speed Boundary Layer
Surface roughness is known to have a substantial impact on the aerothermodynamic loading of hypersonic vehicles, particularly via its influence on the laminar-turbulent transition process within the boundary layer. Numerical simulations are performed to investigate the effects of a distributed region of densely packed, smooth-shaped roughness elements on the laminar boundary layer over a 7-degree half-angle, circular cone for flow conditions corresponding to a selected trajectory point from the ascent phase of the HIFiRE-1 flight experiment. For peak-to-valley roughness heights of 50 percent or less in comparison with the thickness of the unperturbed boundary layer, the computations converge to a stationary flow, suggesting that the flow is globally stable. Analysis of convective instabilities in the wake of the roughness patch indicates two dominant families of unstable disturbances, namely, a high frequency mode that corresponds to Mack mode waves modified by the wake and a lower frequency mode that corresponds to shear layer instabilities associated with the streaks in the roughness wake. Even though the peak growth rate of the later mode is more than 35 percent greater than the peak growth rates of the Mack modes, the latter modes achieve higher amplification ratios, and hence, are likely to dominate the onset of transition, which is estimated to occur slightly later than that in the unperturbed, i.e., smooth surface boundary layer. Additional computations are performed to investigate the effects of various roughness patch configurations on a Mach 3.5 flat plate boundary layer, to help guide an upcoming experiment in the Mach 3.5 Supersonic Low Disturbance Tunnel at NASA Langley Research Center. In this case, the cumulative reinforcement of basic state distortion over the length of the roughness patch is predicted to yield a significantly earlier transition than that over a smooth plate or a plate with a shorter length roughness patch
- …