391 research outputs found

    Three Generation Neutrino Oscillation Parameters after SNO

    Get PDF
    We examine the solar neutrino problem in the context of the realistic three neutrino mixing scenario including the SNO charged current (CC) rate. The two independent mass squared differences Δm212\Delta m^2_{21} and Δm312Δm322\Delta m^2_{31} \approx \Delta m^2_{32} are taken to be in the solar and atmospheric ranges respectively. We incorporate the constraints on Δ\Deltam312^2_{31} as obtained by the SuperKamiokande atmospheric neutrino data and determine the allowed values of Δm212\Delta m^2_{21}, θ12\theta_{12} and θ13\theta_{13} from a combined analysis of solar and CHOOZ data. Our aim is to probe the changes in the values of the mass and mixing parameters with the inclusion of the SNO data as well as the changes in the two-generation parameter region obtained from the solar neutrino analysis with the inclusion of the third generation. We find that the inclusion of the SNO CC rate in the combined solar + CHOOZ analysis puts a more restrictive bound on θ13\theta_{13}. Since the allowed values of θ13\theta_{13} are constrained to very small values by the CHOOZ experiment there is no qualitative change over the two generation allowed regions in the Δm212tan2θ12\Delta m^2_{21} - \tan^2 \theta_{12} plane. The best-fit comes in the LMA region and no allowed area is obtained in the SMA region at 3σ\sigma level from combined solar and CHOOZ analysis.Comment: One reference added. Version to apprear in PR

    Hadron energy response of the Iron Calorimeter detector at the India-based Neutrino Observatory

    Full text link
    The results of a Monte Carlo simulation study of the hadron energy response for the magnetized Iron CALorimeter detector, ICAL, proposed to be located at the India-based Neutrino Observatory (INO) is presented. Using a GEANT4 modeling of the detector ICAL, interactions of atmospheric neutrinos with target nuclei are simulated. The detector response to hadrons propagating through it is investigated using the hadron hit multiplicity in the active detector elements. The detector response to charged pions of fixed energy is studied first, followed by the average response to the hadrons produced in atmospheric neutrino interactions using events simulated with the NUANCE event generator. The shape of the hit distribution is observed to fit the Vavilov distribution, which reduces to a Gaussian at high energies. In terms of the parameters of this distribution, we present the hadron energy resolution as a function of hadron energy, and the calibration of hadron energy as a function of the hit multiplicity. The energy resolution for hadrons is found to be in the range 85% (for 1GeV) -- 36% (for 15 GeV).Comment: 14 pages, 10 figures (24 eps files

    Testing whether muon neutrino flavor mixing is maximal

    Full text link
    The small difference between the survival probabilities of muon neutrino and antineutrino beams, traveling through earth matter in a long baseline experiment such as MINOS, is shown to be an important measure of any possible deviation from maximality in the flavor mixing of those states.Comment: Some revision has been made in the experimental discussions with two new figures replacing the old ones and a clarification of the accuracy of the perturbative result has been included. This version will be published in Physical Review Letters. Title changed as asked by the editors of Physical Review Letter

    Energy Independent Solution to the Solar Neutrino Anomaly including the SNO data

    Get PDF
    The global data on solar neutrino rates and spectrum, including the SNO charged current rate, can be explained by LMA, LOW or the energy independent solution -- corresponding to near-maximal mixing. All the three favour a mild upward renormalisation of the Cl rate. A mild downward shift of the BB neutrino flux is favoured by the energy independent and to a lesser extent the LOW solution, but not by LMA. Comparison with the ratio of SK elastic and SNO charged current scattering rates favours the LMA over the other two solutions, but by no more than 1.5σ1.5\sigma.Comment: 18 pages, latex, 3 figure

    Solar neutrino oscillations and indications of matter effects in the Sun

    Get PDF
    Assuming the current best-fit solutions to the solar neutrino problem at large mixing angle, we briefly illustrate how prospective data from the Sudbury Neutrino Observatory (SNO) and from the Kamioka Liquid scintillator Anti-Neutrino Detector (KamLAND) can increase our confidence in the occurrence of standard matter effects on active neutrino flavor oscillations in the Sun, which are starting to emerge from current data.Comment: Updated to include the first KamLAND data. One figure adde

    Progress in neutrino oscillation searches and their implications

    Full text link
    Neutrino Oscillation, in which a given flavour of neutrino transforms into another is a powerful tool for probing small neutrino masses. The intrinsic neutrino properties involved are neutrino mass squared difference Δm2\Delta m^2 and the mixing angle in vacuum θ\theta. In this talk I will summarize the progress that we have achieved in our search for neutrino oscillation with special emphasis on the recent results from the Sudbury Neutrino Observatory (SNO) on the measurement of solar neutrino fluxes. I will outline the current bounds on the neutrino masses and mixing parameters and discuss the major physics goals of future neutrino experiments in the context of the present picture.Comment: Plenary Talk, WHEPP-7, January 2002, published in Pramana, Vol. 60, 261, 200

    New interactions: past and future experiments

    Get PDF
    In this talk I will review the present status and future perspectives of some popular extensions of the conventional three-neutrino oscillation scenario, from a purely phenomenological point of view. For concreteness I will focus only on three specific scenarios: non-standard neutrino interactions with matters, models with extra sterile neutrinos, and neutrino decay and decoherence.Comment: LaTeX file using jpconf class, 8 pages, 2 tables. Proceedings of the "XXIII International Conference on Neutrino Physics and Astrophysics" (Neutrino 08), Christchurch, New Zealand, May 25-31, 200

    Super-Kamiokande atmospheric neutrinos: Status of subdominant oscillations

    Get PDF
    In the context of the recent (79.5 kTy) Super-Kamiokande atmospheric neutrino data, we concisely review the status of muonic-tauonic flavor oscillations and of the subdominant electron or sterile neutrino mixing, in schemes with three or four families and one dominant mass scale. In the three-family case, where we include the full CHOOZ spectral data, we also show, through a specific example, that ``maximal'' violations of the one-dominant mass scale approximation are not ruled out yet.Comment: 8 pages + 10 figure

    Dynamics of cubic-tetragonal phase transition in KNbO3_3 perovskite

    Full text link
    The low-energy part of the vibration spectrum in KNbO3_3 was studied by cold neutron inelastic scattering in the cubic phase. In addition to acoustic phonons, we observe strong diffuse scattering, which consists of two components. The first one is quasi-static and has a temperature-independent intensity. The second component appears as quasi-elastic scattering in the neutron spectrum indicating a dynamic origin. From analysis of the inelastic data we conclude that the quasi-elastic component and the acoustic phonon are mutually coupled. The susceptibility associated with the quasi-elastic component grows as the temperature approaches TC_C
    corecore