2,841 research outputs found

    Dynamics of axial separation in long rotating drums

    Full text link
    We propose a continuum description for the axial separation of granular materials in a long rotating drum. The model, operating with two local variables, concentration difference and the dynamic angle of repose, describes both initial transient traveling wave dynamics and long-term segregation of the binary mixture. Segregation proceeds through ultra-slow logarithmic coarsening.Comment: 4 pages, 3 Postscript figures; submitted to PR

    Thermophysical and elastic properties of Cu50Zr50 and (Cu50Zr50)95Al5 bulk-metallic-glass-forming alloys

    Get PDF
    By employing a containerless high-temperature high-vacuum electrostatic levitation technique, the thermophysical properties, including the ratio between the specific heat capacity and the hemispherical total emissivity, the specific volume, and the viscosity, of Cu50Zr50 and (Cu50Zr50)95Al5 bulk-metallic-glass (BMG)-forming liquids have been measured. Compared with Cu50Zr50, the improved glass-forming ability of (Cu50Zr50)95Al5 can be attributed to its dense liquid structure and its high value of viscosity. Additionally, the relationship between the viscosity of various BMG forming liquids at the melting temperature and the elastic properties of the corresponding glasses at room temperature will be compared

    A universal quantum estimator

    Get PDF
    Almost all computational tasks in the modem computer can be designed from basic building blocks. These building blocks provide a powerful and efficient language for describing algorithms. In quantum computers, the basic building blocks are the quantum gates. In this tutorial, we will look at quantum gates that act on one and two qubits and briefly discuss how these gates can be used in quantum networks

    Functional Hand Proportion is Approximated by the Fibonacci Series

    Get PDF
    The debatable relationship of functional human hand proportion with the Fibonacci series has remained an obscure scientific enigma short of clinical interest. The main difficulty of proving such a relationship lies in defining what should constitute true "functional" proportion. In this study, we re-evaluate this unique relationship using hand flexion creases as anatomical surrogates for the functional axes of joint rotation. Standardized desktop photocopies of palmar views of both hands in full digital extension and abduction were obtained from 100 healthy male volunteers of Chinese ethnicity. The functional axes were represented by the distal digital crease (distal interphalangeal joint, DIPJ), proximal digital crease (proximal interphalangeal joint, PIPJ), as well as the midpoint between the palmar digital and transverse palmar creases (metacarpophalangeal joint, MCPJ). The ratio of DIPJ-Fingertip:PIPJ-DIPJ:MCPJ-PIPJ (p3:p2:p1) were measured by two independent observers and represented as standard deviation about the mean, and then compared to the theoretical ratio of 1:1:2. Our results showed that, for the 2nd to 5th digits, the p2:p3 ratios were 0.97±0.09, 1.10±0.10, 1.04±0.12 and 0.80±0.08 respectively; whilst the p1:p2 ratios were 1.91±0.17, 1.98±0.14, 1.89±0.16 and 2.09±0.24 respectively. When the data were analyzed for all digits, they showed a combined p3:p2:p1 ratio of 1:0.98:2.01. In conclusion, our results suggest that functional human hand proportion, as defined by flexion creases, is approximated by the Fibonacci series

    A performance comparison of the contiguous allocation strategies in 3D mesh connected multicomputers

    Get PDF
    The performance of contiguous allocation strategies can be significantly affected by the distribution of job execution times. In this paper, the performance of the existing contiguous allocation strategies for 3D mesh multicomputers is re-visited in the context of heavy-tailed distributions (e.g., a Bounded Pareto distribution). The strategies are evaluated and compared using simulation experiments for both First-Come-First-Served (FCFS) and Shortest-Service-Demand (SSD) scheduling strategies under a variety of system loads and system sizes. The results show that the performance of the allocation strategies degrades considerably when job execution times follow a heavy-tailed distribution. Moreover, SSD copes much better than FCFS scheduling strategy in the presence of heavy-tailed job execution times. The results also show that the strategies that depend on a list of allocated sub-meshes for both allocation and deallocation have lower allocation overhead and deliver good system performance in terms of average turnaround time and mean system utilization

    Chemical Raman Enhancement of Organic Adsorbates on Metal Surfaces

    Get PDF
    Using a combination of first-principles theory and experiments, we provide a quantitative explanation for chemical contributions to surface-enhanced Raman spectroscopy for a well-studied organic molecule, benzene thiol, chemisorbed on planar Au(111) surfaces. With density functional theory calculations of the static Raman tensor, we demonstrate and quantify a strong mode-dependent modification of benzene thiol Raman spectra by Au substrates. Raman active modes with the largest enhancements result from stronger contributions from Au to their electron-vibron coupling, as quantified through a deformation potential, a well-defined property of each vibrational mode. A straightforward and general analysis is introduced that allows extraction of chemical enhancement from experiments for specific vibrational modes; measured values are in excellent agreement with our calculations.Comment: 5 pages, 4 figures and Supplementary material included as ancillary fil
    corecore