800 research outputs found

    Bubble-particle collisions in turbulence: insights from point-particle simulations

    Get PDF
    Bubble-particle collisions in turbulence are central to a variety of processes such as froth flotation. Despite their importance, details of the collision process have not received much attention yet. This is compounded by the sometimes counter-intuitive behaviour of bubbles and particles in turbulence, as exemplified by the fact that they segregate in space. Although bubble-particle relative behaviour is fundamentally different from that of identical particles, the existing theoretical models are nearly all extensions of theories for particle-particle collisions in turbulence. The adequacy of these theories has yet to be assessed as appropriate data remain scarce to date. In this investigation, we study the geometric collision rate by means of direct numerical simulations of bubble-particle collisions in homogeneous isotropic turbulence using the point-particle approach over a range of the relevant parameters, including the Stokes and Reynolds numbers. We analyse the spatial distribution of bubble and particles, and quantify to what extent their segregation reduces the collision rate. This effect is countered by increased approach velocities for bubble-particle compared to monodisperse pairs, which we relate to the difference in how bubbles and particles respond to fluid accelerations. We found that in the investigated parameter range, these collision statistics are not altered significantly by the inclusion of a lift force or different drag parametrisations, or when assuming infinite particle density. Furthermore, we critically examine existing models and discuss inconsistencies therein that contribute to the discrepancy.Comment: 29 pages, 18 figures to be published in Journal of Fluid Mechanic

    Characterization of carbon nanotubes synthesized from hydrocarbon-rich flame

    Get PDF
    The present study focuses on the characterization of carbon nanotubes (CNTs) synthesized from flame under an atmospheric condition. A laminar flame burner was utilized to establish a rich premixed propane/air flame at the equivalence ratio Φ = 1.8-2.2. The flame was impinged on a stainless steel wire mesh coated with nickel (Ni) catalyst to grow CNTs. Distribution and yield of the CNTs on the substrate were quantified. Carbon nanotubes formed on the substrate were harvested and characterized using scanning electron microscopy (SEM), field emission scanning electron microscopy (FESEM), energy dispersive X-ray spectroscopy (EDX), and thermogravimetric analysis (TGA). The FESEM micrograph showed that the CNTs produced were in disarray. The synthesized CNTs were an average of 50-60 nm in diameter while the length of the tubes was in the order of microns. TGA analysis showed that 75% of CNTs were present in the sample and the oxidation temperature was 510°C

    Pyrolysing horse manure via microwave-induced heating for bioenergy recovery

    Get PDF
    Transforming waste to energy is essential in view of the need to search for greener and more sustainable energy sources. Such transformation of energy is also aligned with the aim of reducing excessive waste generation whilst creating potential biofuel pathways for power generation. In the present study, animal waste in the form of horse manure is being used as feedstock to undergo microwave-induced pyrolysis via a fixed-bed pyrolysis rig. The relationship of the pyrolysis parameters such as pyrolysis temperature of 350 and 550 °C, carrier gas flow rate of 0.5 and 1.5 L/min and ratio of horse manure to activated carbon blend of 1:2 and 1:1, with the yield of pyrolysed products is studied. The derived pyrolysis products in the form of solid, liquid and gaseous are characterised and quantified. Result shows that the highest yield of solid, liquid and gaseous products obtained are 78.8 wt%, 24.7 wt% and 34.2 wt%. Solid yield is observed to decrease with increasing pyrolysis temperature while gaseous yield shows a reverse trend. Higher carrier gas flow rate is observed to lower the generation of gaseous and liquid yield while increasing the solid yield. Higher amount of activated carbon within the feedstock is seen to lower the solid yield but increase the gaseous and liquid yields. The liquid yield is found to contain 55.78 wt% of phenolic compounds while gaseous product consists of up to 55 vol% of syngas. The control of the operating conditions in pyrolysis rig enables the production of pyrolysis end products in different phases, generating useful bioenergy and biofertilizer products in the context of circular economy

    COVID-19 Related Mobility Reduction: Heterogenous Effects on Sleep and Physical Activity Rhythms

    Full text link
    Mobility restrictions imposed to suppress coronavirus transmission can alter physical activity (PA) and sleep patterns. Characterization of response heterogeneity and their underlying reasons may assist in tailoring customized interventions. We obtained wearable data covering baseline, incremental movement restriction and lockdown periods from 1824 city-dwelling, working adults aged 21 to 40 years, incorporating 206,381 nights of sleep and 334,038 days of PA. Four distinct rest activity rhythms (RARs) were identified using k-means clustering of participants' temporally distributed step counts. Hierarchical clustering of the proportion of time spent in each of these RAR revealed 4 groups who expressed different mixtures of RAR profiles before and during the lockdown. Substantial but asymmetric delays in bedtime and waketime resulted in a 24 min increase in weekday sleep duration with no loss in sleep efficiency. Resting heart rate declined 2 bpm. PA dropped an average of 38%. 4 groups with different compositions of RAR profiles were found. Three were better able to maintain PA and weekday/weekend differentiation during lockdown. The least active group comprising 51 percent of the sample, were younger and predominantly singles. Habitually less active already, this group showed the greatest reduction in PA during lockdown with little weekday/weekend differences. Among different mobility restrictions, removal of habitual social cues by lockdown had the largest effect on PA and sleep. Sleep and resting heart rate unexpectedly improved. RAR evaluation uncovered heterogeneity of responses to lockdown and can identify characteristics of persons at risk of decline in health and wellbeing.Comment: 30 pages, 3 main figures, 3 tables, 4 supplementary figure

    40 Years of CSF Toxicity Studies in ALS: What Have We Learnt About ALS Pathophysiology?

    Get PDF
    AM is a Lady Edith Wolfson Clinical Fellow and is jointly funded by the Medical Research Council (MRC) and the Motor Neurone Disease Association (MR/R001162/1). He also acknowledges support from the Rowling Scholars scheme, administered by the Anne Rowling Regenerative Neurology Clinic (ARRNC), University of Edinburgh, and a seedcorn grant from The Chief Scientist Office and the RS Macdonald Charitable Trust via the Scottish Neurological Research Fund, administered by the University of St Andrews. The Hardingham and Chandran laboratories are supported by the Euan MacDonald Centre for Motor Neurone Disease Research, and the UK Dementia Research Institute (DRI), which receives its funding from UK DRI Ltd., funded by the MRC, Alzheimer’s Society and Alzheimer’s Research UK.Peer reviewedPublisher PD

    Qigong Exercise Alleviates Fatigue, Anxiety, and Depressive Symptoms, Improves Sleep Quality, and Shortens Sleep Latency in Persons with Chronic Fatigue Syndrome-Like Illness

    Get PDF
    Objectives:. To evaluate the effectiveness of Baduanjin Qigong exercise on sleep, fatigue, anxiety, and depressive symptoms in chronic fatigue syndrome- (CFS-) like illness and to determine the dose-response relationship. Methods:. One hundred fifty participants with CFS-like illness (mean age = 39.0, SD = 7.9) were randomly assigned to Qigong and waitlist. Sixteen 1.5-hour Qigong lessons were arranged over 9 consecutive weeks. Pittsburgh Sleep Quality Index (PSQI), Chalder Fatigue Scale (ChFS), and Hospital Anxiety and Depression Scale (HADS) were assessed at baseline, immediate posttreatment, and 3-month posttreatment. The amount of Qigong self-practice was assessed by self-report. Results:. Repeated measures analyses of covariance showed a marginally nonsignificant (P = 0.064) group by time interaction in the PSQI total score, but it was significant for the “subjective sleep quality” and “sleep latency” items, favoring Qigong exercise. Improvement in “subjective sleep quality” was maintained at 3-month posttreatment. Significant group by time interaction was also detected for the ChFS and HADS anxiety and depression scores. The number of Qigong lessons attended and the amount of Qigong self-practice were significantly associated with sleep, fatigue, anxiety, and depressive symptom improvement. Conclusion:. Baduanjin Qigong was an efficacious and acceptable treatment for sleep disturbance in CFS-like illness. This trial is registered with Hong Kong Clinical Trial Register: HKCTR-1380

    A techno-economical and automotive emissions impact study of global biodiesel usage in diesel engines

    Get PDF
    In recent years, biodiesel has arrived at the forefront, as a mainstream alternative energy, due to its advantages properties such as renewability, compatibility with existing automotive infrastructures and diesel engines, cleaner emissions. Many studies have been conducted to improve the maturity of biodiesel production technology, and fuel application. However, the global-scale economical and emissions impacts of first generation biodiesel is still not being adequately addressed. This requires immediate attention as the current economical setback for biodiesel is affected by low crude oil price. In this study, the correlations between the biodiesel production feasibility, crude oil price, and feedstock availability are defined. By using a data-driven predictive model, insights can be drawn for the worldwide profitability, potential level of diesel replacement using biodiesel, and environmental impact. The model allows prediction to be done on potential biodiesel production at a country-region level, at different crude oil prices and fuel blending ratios. It was also predicted that up to 9% of total global diesel consumption could be replaced by profitable biodiesel, if crude oil price rises up to USD 135 per barrel and factoring in refinery cost of USD 0.05 per litre. Countries near the equatorial belt with abundance palm oil feedstock such as Malaysia, Papua New Guinea and Indonesia could potentially augment their gross domestic products by 10.36%, 7.67% and 5.57%, respectively. If all non-domestic usage feedstock is converted into biodiesel for automotive usage, there will be conclusive reduction of engine-out emissions such as unburnt hydrocarbons and particulate matter. Ultimately, this model proves that there is high potential for mass adoption of biodiesel to supplant fossil diesel globally, allowing the generation of income, improving energy security and produces cleaner automotive emissions
    corecore