3,142 research outputs found

    Focused Ion Beam Milling and Deposition of Tungsten Contacts on Exfoliated Graphene for Electronic Device Applications

    No full text
    We demonstrate a rapid-prototyping method for the fabrication of electrical structures from exfoliated graphene using focused ion beam (FIB) assisted deposition of tungsten and milling. Alignment accuracies of less than 250 nm are achieved without imaging of the graphene using the FIB beam. Parameters for the FIB assisted deposition on graphene have to be controlled exactly to avoid damage to the underlying graphene. Measured channel resistance of 58 k? shows a good electrical contact between deposited tungsten and graphene

    Detection and classification of turn fault and high resistance connection fault in permanent magnet machines based on zero sequence voltage

    Get PDF
    Health monitoring and fault detection are becoming more and more important in electrical machine systems due to the increasing demand for reliability. Winding turn fault is a common fault in permanent magnet machines which can cause severe damages and requires prompt detection and mitigation. High resistance connection (HRC) fault which result in phase asymmetry may also occur but does not require immediate shutdown. Thus, apart from the fault detection, the classification between the two faults is also required. In this paper, a new technique for detecting and classifying turn fault and HRC fault by utilizing both the high and low frequency components of the zero sequence voltage is proposed. The dependence on the operating conditions is minimized with the proposed fault indicators. The effectiveness of fault detection and classification has been verified by extensive experimental tests on a triple redundant fault tolerant permanent magnet assisted synchronous reluctance machine (PMA SynRM). The robustness of the turn fault detection in transient states and under no load conditions has also been demonstrated

    Thermodynamical Metrics and Black Hole Phase Transitions

    Full text link
    An important phase transition in black hole thermodynamics is associated with the divergence of the specific heat with fixed charge and angular momenta, yet one can demonstrate that neither Ruppeiner's entropy metric nor Weinhold's energy metric reveals this phase transition. In this paper, we introduce a new thermodynamical metric based on the Hessian matrix of several free energy. We demonstrate, by studying various charged and rotating black holes, that the divergence of the specific heat corresponds to the curvature singularity of this new metric. We further investigate metrics on all thermodynamical potentials generated by Legendre transformations and study correspondences between curvature singularities and phase transition signals. We show in general that for a system with n-pairs of intensive/extensive variables, all thermodynamical potential metrics can be embedded into a flat (n,n)-dimensional space. We also generalize the Ruppeiner metrics and they are all conformal to the metrics constructed from the relevant thermodynamical potentials.Comment: Latex, 25 pages, reference added, typos corrected, English polished and the Hawking-Page phase transition clarified; to appear in JHE

    A Fault Tolerant Machine Drive Based on Permanent Magnet Assisted Synchronous Reluctance Machine

    Get PDF
    A fault tolerant machine drive based on permanent magnet assisted synchronous reluctance machine (PMA SynRM) is proposed and investigated for applications where reliability and safety are crucial. In order to achieve enhanced fault tolerant capability, the risk of permanent magnet field that cannot be turned off under fault conditions is minimized without compromise in torque density and efficiency. This is achieved by employing a synchronous reluctance rotor topology with embedded permanent magnets. Three independent, segregated 3-phase windings are configured to ensure isolation and non-overlapping between the three 3-phase winding sets. Each 3-phase winding set is driven by a standard 3-phase inverter to facilitate fast integration and cost reduction. The machine behavior under various fault conditions has been evaluated by finite element (FE) simulations. A 40kW prototype was designed, constructed and tested. The test results demonstrate the performance and excellent fault tolerant capability of the proposed drive system under various faults, including open circuit and short circuit conditions

    PWM Ripple Currents Based Turn Fault Detection for Multiphase Permanent Magnet Machines

    Get PDF
    Most permanent magnet machines are driven by inverters with pulse width modulation (PWM) voltages. The currents contain high frequency (HF) components which are inversely proportional to machine inductance. The HF PWM ripple currents can be used to detect a turn fault that gives rise to changes in inductance. The features of these HF components in turn fault conditions are analyzed. A bandpass (BP) filter is designed to extract the selected sideband components, and their root-mean-square (RMS) values are measured. The RMS values in all phases are compared. It is shown that the RMS ripple current ratios between two adjacent phases provide a very good means of detecting turn fault with high signal-to-noise ratio. The detection method can identify the faulted phase, tolerate inherent imbalance of the machine, and is hardly affected by transient states. The method is assessed by simulations and experiments on a five-phase permanent magnet machine

    Single production of charged gauge bosons from little Higgs models in association with top quark at the LHCLHC

    Get PDF
    In the context of the little Higgs models, we discuss single production of the new charged gauge bosons in association with top quark at the CERNCERN Large Hadron Collider(LHC)(LHC). We find that the new charged gauge bosons WH−W_{H}^{-} and X−X^{-}, which are predicted by the littlest Higgs model and the SU(3) simple model, respectively, can be abundantly produced at the LHCLHC. However, since the main backgrounds coming from the processes pp→ttˉ+Xpp\to t\bar{t}+X and pp→tW−+Xpp\to tW^{-}+X are very large, the values of the ratios NWN_{W} and NXN_{X} are very small in most of the parameter space. It is only possible to detect the signal of the gauge boson WH−W_{H}^{-} via the process pp→gb+X→tWH−+Xpp\to gb+X\to tW_{H}^{-}+X at the LHCLHC in a small region of the parameter space.Comment: 14pages, 4 figures. To be published in Europhysics Letter

    A scalar field instability of rotating and charged black holes in (4+1)-dimensional Anti-de Sitter space-time

    Full text link
    We study the stability of static as well as of rotating and charged black holes in (4+1)-dimensional Anti-de Sitter space-time which possess spherical horizon topology. We observe a non-linear instability related to the condensation of a charged, tachyonic scalar field and construct "hairy" black hole solutions of the full system of coupled Einstein, Maxwell and scalar field equations. We observe that the limiting solution for small horizon radius is either a hairy soliton solution or a singular solution that is not a regular extremal solution. Within the context of the gauge/gravity duality the condensation of the scalar field describes a holographic conductor/superconductor phase transition on the surface of a sphere.Comment: 16 pages including 8 figures, v2: discussion on soliton solutions extended; v3: matches version accepted for publication in JHE

    Development of FRET-Based Assays in the Far-Red Using CdTe Quantum Dots

    Get PDF
    Colloidal quantum dots (QDs) are now commercially available in a biofunctionalized form, and Förster resonance energy transfer (FRET) between bioconjugated dots and fluorophores within the visible range has been observed. We are particularly interested in the far-red region, as from a biological perspective there are benefits in pushing to ∌700 nm to minimize optical absorption (ABS) within tissue and to avoid cell autofluorescence. We report on FRET between streptavidin- (STV-) conjugated CdTe quantum dots, Qdot705-STV, with biotinylated DY731-Bio fluorophores in a donor-acceptor assay. We also highlight the changes in DY731-Bio absorptivity during the streptavidin-biotin binding process which can be attributed to the structural reorientation. For fluorescence beyond 700 nm, different alloy compositions are required for the QD core and these changes directly affect the fluorescence decay dynamics producing a marked biexponential decay with a long-lifetime component in excess of 100 nanoseconds. We compare the influence of the two QD relaxation routes upon FRET dynamics in the presence of DY731-Bio

    Conformal Symmetry of a Black Hole as a Scaling Limit: A Black Hole in an Asymptotically Conical Box

    Full text link
    We show that the previously obtained subtracted geometry of four-dimensional asymptotically flat multi-charged rotating black holes, whose massless wave equation exhibit SL(2,R)×SL(2,R)×SO(3)SL(2,\R) \times SL(2,\R) \times SO(3) symmetry may be obtained by a suitable scaling limit of certain asymptotically flat multi-charged rotating black holes, which is reminiscent of near-extreme black holes in the dilute gas approximation. The co-homogeneity-two geometry is supported by a dilation field and two (electric) gauge-field strengths. We also point out that these subtracted geometries can be obtained as a particular Harrison transformation of the original black holes. Furthermore the subtracted metrics are asymptotically conical (AC), like global monopoles, thus describing "a black hole in an AC box". Finally we account for the the emergence of the SL(2,R)×SL(2,R)×SO(3)SL(2,\R) \times SL(2,\R) \times SO(3) symmetry as a consequence of the subtracted metrics being Kaluza-Klein type quotients of AdS3×4S3 AdS_3\times 4 S^3. We demonstrate that similar properties hold for five-dimensional black holes.Comment: Sections 3 and 4 significantly augmente

    Ultrafast Raman laser mode-locked by nanotubes

    Get PDF
    We demonstrate passive mode-locking of a Raman fiber laser using a nanotube-based saturable absorber coupled to a net normal dispersion cavity. This generates highly chirped 500 ps pulses. These are then compressed down to 2 ps , with 1.4 kW peak power, making it a simple wavelength-versatile source for various applications
    • 

    corecore