4,157 research outputs found
Reducing combinatorial uncertainties: A new technique based on MT2 variables
We propose a new method to resolve combinatorial ambiguities in hadron
collider events involving two invisible particles in the final state. This
method is based on the kinematic variable MT2 and on the MT2-assisted-on-shell
reconstruction of invisible momenta, that are reformulated as `test' variables
Ti of the correct combination against the incorrect ones. We show how the
efficiency of the single Ti in providing the correct answer can be
systematically improved by combining the different Ti and/or by introducing
cuts on suitable, combination-insensitive kinematic variables. We illustrate
our whole approach in the specific example of top anti-top production, followed
by a leptonic decay of the W on both sides. However, by construction, our
method is also directly applicable to many topologies of interest for new
physics, in particular events producing a pair of undetected particles, that
are potential dark-matter candidates. We finally emphasize that our method is
apt to several generalizations, that we outline in the last sections of the
paper.Comment: 1+23 pages, 8 figures. Main changes in v3: (1) discussion at the end
of sec. 2 improved; (2) added sec. 4.2 about the method's dependence on mass
information. Matches journal versio
Optical characteristics of GAN/SI micro-pixel light-emitting diode arrays
Two-dimensional arrays of emissive micro-light-emitting diodes (μ-LEDS) have been developed for a variety of applications such as high resolution micro-displays, maskless photo-lithography and multichannel visible-light optical communications amongst others. μ-LEDs have traditionally been
fabricated on InGaN LED wafers grown on transparent sapphire substrates, and have suffered from optical crosstalk issues. When a single pixel is addressed, adjacent pixels and regions appear
illuminated simultaneously. Such problems could result in functional failure in high-density μ-LED
applications, including reduced resolution of micro-display and decreased signal-to-noise ratio in ...postprin
Surface Oxide Formation during Rapid Heating of Zn-coated Press Hardening Steel
During the conventional die-quenching processing of a galvanized PHS steel, a thick ZnO layer is formed at the surface. When the heating rate is increased, the oxide at the surface is a thin Al2O3 layer. This remarkable change in surface oxide during rapid heating is due to the partial melting of the coating instead of the solidification of the coating and the formation of Fe-Zn intermetallics. In the present study, the characterization of the surface oxide formation at different heating rates is presented.X1184Ysciescopu
Bone mineral density, balance performance, balance self-efficacy and falls in breast cancer survivors with and without Qigong training: An observational study
published_or_final_versio
Temperature dependence of the electronic structure of the J(eff)=12 Mott insulator Sr2IrO4 studied by optical spectroscopy
We investigated the temperature-dependent evolution of the electronic structure of the J(eff)=1/2 Mott insulator Sr2IrO4 using optical spectroscopy. The optical conductivity spectra sigma(omega) of this compound has recently been found to exhibit two d-d transitions associated with the transition between the J(eff)=1/2 and J(eff)=3/2 bands due to the cooperation of the electron correlation and spin-orbit coupling. As the temperature increases, the two peaks show significant changes resulting in a decrease in the Mott gap. The experimental observations are compared with the results of first-principles calculation in consideration of increasing bandwidth. We discuss the effect of the temperature change in the electronic structure of Sr2IrO4 in terms of local lattice distortion, excitonic effect, electron-phonon coupling, and magnetic ordering.open69575
Measurements of neutral vector resonance in Higgsless models at the LHC
In Higgsless models, new vector resonances appear to restore the unitarity of
the W_L W_L scattering amplitude without the Higgs boson. In the ideal
delocalized three site Higgsless model, one of large prodcution cross section
of the neutral vector resonance (Z') at the Large Hadron Collider is the
W-associated production, pp \to Z'W \to WWW. Although the dileptonic decay
channnel, l\nu l'\nu 'jj, is experimentally clean to search for the Z' signals,
it is difficult to reconstruct the Z' invariant mass due to the two neutrinos
in the final state. We study collider signatures of Z' using the
M_{T2}-Assisted On-Shell (MAOS) reconstruction of the missing neutrino momenta.
We show the prospect of the Z' mass determination in the channel, l\nu l'\nu
'jj, at the Large Hadron Collider.Comment: 16 pages, 6 figures, 5 tables; v2: references added, minor
corrections, version published in JHE
Spin Discrimination in Three-Body Decays
The identification of the correct model for physics beyond the Standard Model
requires the determination of the spin of new particles. We investigate to
which extent the spin of a new particle can be identified in scenarios
where it decays dominantly in three-body decays . Here we
assume that is a candidate for dark matter and escapes direct detection at
a high energy collider such as the LHC. We show that in the case that all
intermediate particles are heavy, one can get information on the spins of
and at the LHC by exploiting the invariant mass distribution of the two
standard model fermions. We develop a model-independent strategy to determine
the spins without prior knowledge of the unknown couplings and test it in a
series of Monte Carlo studies.Comment: 31+1 pages, 4 figures, 8 tables, JHEP.cls include
Spin and Chirality Effects in Antler-Topology Processes at High Energy Colliders
We perform a model-independent investigation of spin and chirality
correlation effects in the antler-topology processes
at high energy colliders with polarized
beams. Generally the production process
can occur not only through the -channel exchange of vector bosons,
, including the neutral Standard Model (SM) gauge bosons,
and , but also through the - and -channel exchanges of new
neutral states, and , and the -channel
exchange of new doubly-charged states, . The general set of
(non-chiral) three-point couplings of the new particles and leptons allowed in
a renormalizable quantum field theory is considered. The general spin and
chirality analysis is based on the threshold behavior of the excitation curves
for pair production in collisions with
longitudinal and transverse polarized beams, the angular distributions in the
production process and also the production-decay angular correlations. In the
first step, we present the observables in the helicity formalism. Subsequently,
we show how a set of observables can be designed for determining the spins and
chiral structures of the new particles without any model assumptions. Finally,
taking into account a typical set of approximately chiral invariant scenarios,
we demonstrate how the spin and chirality effects can be probed experimentally
at a high energy collider.Comment: 50 pages, 14 figures, 6 tables, matches version published in EPJ
Phenomenological Implications of Deflected Mirage Mediation: Comparison with Mirage Mediation
We compare the collider phenomenology of mirage mediation and deflected
mirage mediation, which are two recently proposed "mixed" supersymmetry
breaking scenarios motivated from string compactifications. The scenarios
differ in that deflected mirage mediation includes contributions from gauge
mediation in addition to the contributions from gravity mediation and anomaly
mediation also present in mirage mediation. The threshold effects from gauge
mediation can drastically alter the low energy spectrum from that of pure
mirage mediation models, resulting in some cases in a squeezed gaugino spectrum
and a gluino that is much lighter than other colored superpartners. We provide
several benchmark deflected mirage mediation models and construct model lines
as a function of the gauge mediation contributions, and discuss their discovery
potential at the LHC.Comment: 29 pages, 9 figure
Strongly Coupled Magnetic and Electronic Transitions in Multivalent Strontium Cobaltites
The topotactic phase transition in SrCoOx (x = 2.5-3.0) makes it possible to reversibly transit between the two distinct phases, i.e. the brownmillerite SrCoO2.5 that is a room-temperature antiferromagnetic insulator (AFM-I) and the perovskite SrCoO3 that is a ferromagnetic metal (FM-M), owing to their multiple valence states. For the intermediate x values, the two distinct phases are expected to strongly compete with each other. With oxidation of SrCoO2.5, however, it has been conjectured that the magnetic transition is decoupled to the electronic phase transition, i.e., the AFM-to-FM transition occurs before the insulator-to-metal transition (IMT), which is still controversial. Here, we bridge the gap between the two-phase transitions by density-functional theory calculations combined with optical spectroscopy. We confirm that the IMT actually occurs concomitantly with the FM transition near the oxygen content x = 2.75. Strong charge-spin coupling drives the concurrent IMT and AFM-to-FM transition, which fosters the near room-T magnetic transition characteristic. Ultimately, our study demonstrates that SrCoOx is an intriguingly rare candidate for inducing coupled magnetic and electronic transition via fast and reversible redox reactions
- …
