50,493 research outputs found

    Dynamic transition and Shapiro-step melting in a frustrated Josephson-junction array

    Full text link
    We consider a two-dimensional fully frustrated Josephson-junction array driven by combined direct and alternating currents. Interplay between the mode locking phenomenon, manifested by giant Shapiro steps in the current-voltage characteristics, and the dynamic phase transition is investigated at finite temperatures. Melting of Shapiro steps due to thermal fluctuations is shown to be accompanied by the dynamic phase transition, the universality class of which is also discussed

    Leptogenesis origin of Dirac gaugino dark matter

    Full text link
    The Dirac nature of the gauginos (and also the Higgsinos) can be realized in RR-symmetric supersymmetry models. In this class of models, the Dirac bino (or wino) with a small mixture of the Dirac Higgsinos is a good dark matter candidate. When the seesaw mechanism with Higgs triplet superfields is implemented to account for the neutrino masses and mixing, the leptogenesis driven by the heavy triplet decay is shown to produce not only the matter-antimatter asymmetry but also the asymmetric relic density of the Dirac gaugino dark matter. The dark matter mass turns out to be controlled by the Yukawa couplings of the heavy Higgs triplets, and it can be naturally at the weak scale for a mild hierarchy of the Yukawa couplings.Comment: 9 pages. Restructured for clear presentation, corrected some errors and typos. No change in conclusio

    Low-frequency method for magnetothermopower and Nernst effect measurements on single crystal samples at low temperatures and high magnetic fields

    Full text link
    We describe an AC method for the measurement of the longitudinal (Sxx) and transverse (Sxy, i.e. Nernst) thermopower of mm-size single crystal samples at low temperatures (T30 T). A low-frequency (33 mHz) heating method is used to increase the resolution, and to determine the temperature gradient reliably in high magnetic fields. Samples are mounted between two thermal blocks which are heated by a sinusoidal frequency f0 with a p/2 phase difference. The phase difference between two heater currents gives a temperature gradient at 2f0. The corresponding thermopower and Nernst effect signals are extracted by using a digital signal processing method due. An important component of the method involves a superconducting link, YBa2Cu3O7+d (YBCO), which is mounted in parallel with sample to remove the background magnetothermopower of the lead wires. The method is demonstrated for the quasi two-dimensional organic conductor a-(BEDT-TTF)2KHg(SCN)4, which exhibits a complex, magnetic field dependent ground state above 22.5 T at low temperatures.Comment: 11 pages, 6 figures, 15 reference

    Dynamic model of fiber bundles

    Full text link
    A realistic continuous-time dynamics for fiber bundles is introduced and studied both analytically and numerically. The equation of motion reproduces known stationary-state results in the deterministic limit while the system under non-vanishing stress always breaks down in the presence of noise. Revealed in particular is the characteristic time evolution that the system tends to resist the stress for considerable time, followed by sudden complete rupture. The critical stress beyond which the complete rupture emerges is also obtained

    Abundance of Cosmological Relics in Low-Temperature Scenarios

    Full text link
    We investigate the relic density n_\chi of non-relativistic long-lived or stable particles \chi in cosmological scenarios in which the temperature T is too low for \chi to achieve full chemical equilibrium. The case with a heavier particle decaying into \chi is also investigated. We derive approximate solutions for n_\chi(T) which accurately reproduce numerical results when full thermal equilibrium is not achieved. If full equilibrium is reached, our ansatz no longer reproduces the correct temperature dependence of the \chi number density. However, it does give the correct final relic density, to an accuracy of about 3% or better, for all cross sections and initial temperatures.Comment: 26 pages, 8 figures, comments added, to appear in Phys. Rev.

    Dynamic model for failures in biological systems

    Full text link
    A dynamic model for failures in biological organisms is proposed and studied both analytically and numerically. Each cell in the organism becomes dead under sufficiently strong stress, and is then allowed to be healed with some probability. It is found that unlike the case of no healing, the organism in general does not completely break down even in the presence of noise. Revealed is the characteristic time evolution that the system tends to resist the stress longer than the system without healing, followed by sudden breakdown with some fraction of cells surviving. When the noise is weak, the critical stress beyond which the system breaks down increases rapidly as the healing parameter is raised from zero, indicative of the importance of healing in biological systems.Comment: To appear in Europhys. Let

    On the Security of Millimeter Wave Vehicular Communication Systems using Random Antenna Subsets

    Full text link
    Millimeter wave (mmWave) vehicular communica tion systems have the potential to improve traffic efficiency and safety. Lack of secure communication links, however, may lead to a formidable set of abuses and attacks. To secure communication links, a physical layer precoding technique for mmWave vehicular communication systems is proposed in this paper. The proposed technique exploits the large dimensional antenna arrays available at mmWave systems to produce direction dependent transmission. This results in coherent transmission to the legitimate receiver and artificial noise that jams eavesdroppers with sensitive receivers. Theoretical and numerical results demonstrate the validity and effectiveness of the proposed technique and show that the proposed technique provides high secrecy throughput when compared to conventional array and switched array transmission techniques

    A non-equilibrium ortho-to-para ratio of water in the Orion PDR

    Get PDF
    The ortho-to-para ratio (OPR) of H2_2O is thought to be sensitive to the temperature of water formation. The OPR of H2_2O is thus useful to study the formation mechanism of water. We investigate the OPR of water in the Orion PDR (Photon-dominated region), at the Orion Bar and Orion S positions, using data from {\it Herschel}/HIFI. We detect the ground-state lines of ortho- and para-H2_218^{18}O in the Orion Bar and Orion S and we estimate the column densities using LTE and non-LTE methods. Based on our calculations, the ortho-to-para ratio (OPR) in the Orion Bar is 0.1 −- 0.5, which is unexpectedly low given the gas temperature of ∼\sim 85 K, and also lower than the values measured for other interstellar clouds and protoplanetary disks. Toward Orion S, our OPR estimate is below 2. This low OPR at 2 positions in the Orion PDR is inconsistent with gas phase formation and with thermal evaporation from dust grains, but it may be explained by photodesorption
    • …
    corecore