64,555 research outputs found

    N/P InP homojunction solar cells with an In0.53Ga0.47As contacting layer grown by liquid phase epitaxy

    Get PDF
    N/P InP homojunction solar cells with an In sub 0.53 Ga sub 0.47 As contacting layer were fabricated by liquid phase epitaxy (LPE). Electron-Beam-Induced-Current (EBIC) measurements were performed on several selected samples. It was found that the background doping level in the base region sometimes results in a deep junction, which greatly affects the cell performance

    Design sensitivity analysis with Applicon IFAD using the adjoint variable method

    Get PDF
    A numerical method is presented to implement structural design sensitivity analysis using the versatility and convenience of existing finite element structural analysis program and the theoretical foundation in structural design sensitivity analysis. Conventional design variables, such as thickness and cross-sectional areas, are considered. Structural performance functionals considered include compliance, displacement, and stress. It is shown that calculations can be carried out outside existing finite element codes, using postprocessing data only. That is, design sensitivity analysis software does not have to be imbedded in an existing finite element code. The finite element structural analysis program used in the implementation presented is IFAD. Feasibility of the method is shown through analysis of several problems, including built-up structures. Accurate design sensitivity results are obtained without the uncertainty of numerical accuracy associated with selection of a finite difference perturbation

    Anti-correlated time lags in the Z source GX 5-1: Possible evidence for a truncated accretion disk

    Full text link
    We investigate the nature of the inner accretion disk in the neutron star source GX 5-1 by making a detailed study of time lags between X-rays of different energies. Using the cross-correlation analysis, we found anti-correlated hard and soft time lags of the order of a few tens to a few hundred seconds and the corresponding intensity states were mostly the horizontal branch (HB) and upper normal branch (NB). The model independent and dependent spectral analysis showed that during these time lags the structure of accretion disk significantly varied. Both eastern and western approaches were used to unfold the X-ray continuum and systematic changes were observed in soft and hard spectral components. These changes along with a systematic shift in the frequency of quasi-periodic oscillations (QPOs) made it substantially evident that the geometry of the accretion disk is truncated. Simultaneous energy spectral and power density spectral study shows that the production of the horizontal branch oscillations (HBOs) are closely related to the Comptonizing region rather than the disk component in the accretion disk. We found that as the HBO frequency decreases from the hard apex to upper HB, the disk temperature increases along with an increase in the coronal temperature which is in sharp contrast with the changes found in black hole binaries where the decrease in QPO frequency is accompanied by a decrease in the disk temperature and a simultaneous increase in the coronal temperature. We discuss the results in the context of re-condensation of coronal material in the inner region of the disk.Comment: 40 pages, 7 figures, accepted for publication in The Astrophysical Journal Supplement (ApJS

    Theory of Bubble Nucleation and Cooperativity in DNA Melting

    Full text link
    The onset of intermediate states (denaturation bubbles) and their role during the melting transition of DNA are studied using the Peyrard-Bishop-Daxuois model by Monte Carlo simulations with no adjustable parameters. Comparison is made with previously published experimental results finding excellent agreement. Melting curves, critical DNA segment length for stability of bubbles and the possibility of a two states transition are studied.Comment: 4 figures. Accepted for publication in Physical Review Letter

    P/N InP homojunction solar cells by LPE and MOCVD techniques

    Get PDF
    P/N InP homojunction solar cells have been prepared by using both liquid phase epitaxy (LPE) and metallorganic chemical vapor deposition (MOCVD) growth techniques. A heavily doped p-In sub 0.53Ga sub 0.47As contacting layer was incorporated into the cell structure to improve the fill factor and to eliminate surface spiking at the front surface. The best conversion efficiencies (total area) obtained under AM 1 illumination are 14.2 percent for a LPE cell and 15.4 percent for a MOCVD cell

    Characterisation of the dynamical quantum state of a zero temperature Bose-Einstein condensate

    Get PDF
    We describe the quantum state of a Bose-Einstein condensate at zero temperature. By evaluating the Q-function we show that the ground state of Bose-Einstein condensate under the Hartree approximation is squeezed. We find that multimode Schroedinger cat states are generated as the condensate evolves in a ballistic expansion.Comment: 13 pages, 6 figure

    Composite Reflective/Absorptive IR-Blocking Filters Embedded in Metamaterial Antireflection Coated Silicon

    Full text link
    Infrared (IR) blocking filters are crucial for controlling the radiative loading on cryogenic systems and for optimizing the sensitivity of bolometric detectors in the far-IR. We present a new IR filter approach based on a combination of patterned frequency selective structures on silicon and a thin (50 μm\mu \textrm{m} thick) absorptive composite based on powdered reststrahlen absorbing materials. For a 300 K blackbody, this combination reflects ∼\sim50\% of the incoming light and blocks \textgreater 99.8\% of the total power with negligible thermal gradients and excellent low frequency transmission. This allows for a reduction in the IR thermal loading to negligible levels in a single cold filter. These composite filters are fabricated on silicon substrates which provide excellent thermal transport laterally through the filter and ensure that the entire area of the absorptive filter stays near the bath temperature. A metamaterial antireflection coating cut into these substrates reduces in-band reflections to below 1\%, and the in-band absorption of the powder mix is below 1\% for signal bands below 750 GHz. This type of filter can be directly incorporated into silicon refractive optical elements
    • …
    corecore