51 research outputs found
Universal DNA methylation age across mammalian tissues
DATA AVAILABILITY STATEMENT : The individual-level data from the Mammalian Methylation Consortium can be accessed from several online locations. All data from the Mammalian Methylation Consortium are posted on Gene Expression Omnibus (complete dataset, GSE223748). Subsets of the datasets can also be downloaded from accession numbers GSE174758, GSE184211, GSE184213, GSE184215, GSE184216, GSE184218, GSE184220, GSE184221, GSE184224, GSE190660, GSE190661, GSE190662, GSE190663, GSE190664, GSE174544, GSE190665, GSE174767, GSE184222, GSE184223, GSE174777, GSE174778, GSE173330, GSE164127, GSE147002, GSE147003, GSE147004, GSE223943 and GSE223944. Additional details can be found in Supplementary Note 2. The mammalian data can also be downloaded from the Clock Foundation webpage: https://clockfoundation.org/MammalianMethylationConsortium. The mammalian methylation array is available through the non-profit Epigenetic Clock Development Foundation (https://clockfoundation.org/). The manifest file of the mammalian array and genome annotations of CpG sites can be found on Zenodo (10.5281/zenodo.7574747). All other data supporting the findings of this study are available from the corresponding author upon reasonable request.
The chip manifest files, genome annotations of CpG sites and the software code for universal pan-mammalian clocks can be found on GitHub95 at https://github.com/shorvath/MammalianMethylationConsortium/tree/v2.0.0. The individual R code for the universal pan-mammalian clocks, EWAS analysis and functional enrichment studies can be also found in the Supplementary Code.SUPPLEMENTARY MATERIAL 1 : Supplementary Tables 1–3 and Notes 1–6.SUPPLEMENTARY MATERIAL 2 : Reporting SummarySUPPLEMENTARY MATERIAL 3 : Supplementary Data 1–14.SUPPLEMENTARY MATERIAL 4 : Supplementary Code.Aging, often considered a result of random cellular damage, can be accurately estimated using DNA methylation profiles, the foundation of pan-tissue epigenetic clocks. Here, we demonstrate the development of universal pan-mammalian clocks, using 11,754 methylation arrays from our Mammalian Methylation Consortium, which encompass 59 tissue types across 185 mammalian species. These predictive models estimate mammalian tissue age with high accuracy (r > 0.96). Age deviations correlate with human mortality risk, mouse somatotropic axis mutations and caloric restriction. We identified specific cytosines with methylation levels that change with age across numerous species. These sites, highly enriched in polycomb repressive complex 2-binding locations, are near genes implicated in mammalian development, cancer, obesity and longevity. Our findings offer new evidence suggesting that aging is evolutionarily conserved and intertwined with developmental processes across all mammals.https://www.nature.com/nataginghj2024Zoology and EntomologySDG-15:Life on lan
J/psi production as a function of charged-particle pseudorapidity density in p-Pb collisions at root s(NN)=5.02 TeV
We report measurements of the inclusive J/ψ yield and average transverse momentum as a function of charged-particle pseudorapidity density dNch/dη in p–Pb collisions at sNN=5.02TeV with ALICE at the LHC. The observables are normalised to their corresponding averages in non-single diffractive events. An increase of the normalised J/ψ yield with normalised dNch/dη, measured at mid-rapidity, is observed at mid-rapidity and backward rapidity. At forward rapidity, a saturation of the relative yield is observed for high charged-particle multiplicities. The normalised average transverse momentum at forward and backward rapidities increases with multiplicity at low multiplicities and saturates beyond moderate multiplicities. In addition, the forward-to-backward nuclear modification factor ratio is also reported, showing an increasing suppression of J/ψ production at forward rapidity with respect to backward rapidity for increasing charged-particle multiplicity
Craniofacial morphology and growth in Muenke syndrome, Saethre-Chotzen syndrome, and TCF12-related craniosynostosis
OBJECTIVES: To determine whether the midface of patients with Muenke syndrome, Saethre-Chotzen syndrome, or TCF12-related craniosynostosis is hypoplastic compared to skeletal facial proportions of a Dutch control group. MATERIAL AND METHODS: We included seventy-four patients (43 patients with Muenke syndrome, 22 patients with Saethre-Chotzen syndrome, and 9 patients with TCF12-related craniosynostosis) who were referred between 1990 and 2020 (age range 4.84 to 16.83 years) and were treated at the Department of Oral Maxillofacial Surgery, Special Dental Care and Orthodontics, Children's Hospital Erasmus University Medical Center, Sophia, Rotterdam, the Netherlands. The control group consisted of 208 healthy children. RESULTS: Cephalometric values comprising the midface were decreased in Muenke syndrome (ANB: β = -1.87, p = 0.001; and PC1: p < 0,001), Saethre-Chotzen syndrome (ANB: β = -1.76, p = 0.001; and PC1: p < 0.001), and TCF12-related craniosynostosis (ANB: β = -1.70, p = 0.015; and PC1: p < 0.033). CONCLUSIONS: In this study, we showed that the midface is hypoplastic in Muenke syndrome, Saethre-Chotzen syndrome, and TCF12-related craniosynostosis compared to the Dutch control group. Furthermore, the rotation of the maxilla and the typical craniofacial buildup is significantly different in these three craniosynostosis syndromes compared to the controls. CLINICAL RELEVANCE: The maxillary growth in patients with Muenke syndrome, Saethre-Chotzen syndrome, or TCF12-related craniosynostosis is impaired, leading to a deviant dental development. Therefore, timely orthodontic follow-up is recommended. In order to increase expertise and support treatment planning by medical and dental specialists for these patients, and also because of the specific differences between the syndromes, we recommend the management of patients with Muenke syndrome, Saethre-Chotzen syndrome, or TCF12-related craniosynostosis in specialized multidisciplinary teams
Beitraege zur Risiko- und Zuverlaessigkeitsbeurteilung von Tragwerken
TIB: RN 2979 (24)+MF / FIZ - Fachinformationszzentrum Karlsruhe / TIB - Technische InformationsbibliothekSIGLEDEGerman
經濟學全集「統計學」を讀む
39 pages, 11 captioned figures, 8 tables (5 of them in Appendix A), authors from page 33, submitted to JHEP, figures at http://aliceinfo.cern.ch/ArtSubmission/node/2359 ; see paper for full list of authorsInternational audienceThe measurement of prompt D-meson production as a function of multiplicity in p-Pb collisions at TeV with the ALICE detector at the LHC is reported. D, D and D mesons are reconstructed via their hadronic decay channels in the centre-of-mass rapidity range and transverse momentum interval GeV/. The multiplicity dependence of D-meson production is examined by either comparing yields in p-Pb collisions in different event classes, selected based on the multiplicity of produced particles or zero-degree energy, with those in pp collisions, scaled by the number of binary nucleon-nucleon collisions (nuclear modification factor); as well as by evaluating the per-event yields in p-Pb collisions in different multiplicity intervals normalised to the multiplicity-integrated ones (relative yields). The nuclear modification factors for D, D and D are consistent with one another. The D-meson nuclear modification factors as a function of the zero-degree energy are consistent with unity within uncertainties in the measured regions and event classes. The relative D-meson yields, calculated in various intervals, increase as a function of the charged-particle multiplicity. The results are compared with the equivalent pp measurements at TeV as well as with EPOS~3 calculations
- …