283 research outputs found

    Early detection of neurodegeneration in brain ischemia by manganese-enhanced MRI

    Get PDF
    This study aims to employ in vivo manganese-enhanced MRI (MEMRI) to detect neurodegenerative changes in two models of brain ischemia, photothrombotic cortical injury (PCI) and transient middle cerebral artery occlusion (MCAO) in rodents. After systemic Mn 2+ injection to both ischemic models, a close pattern of Tl-weighted hyperintensity was observed throughout different brain regions in comparison to the distribution of GFAP, MnSOD and GS immunoreactivities, whereby conventional MRI could hardly detect such. In addition, the infarct volumes in the posterior parts of the brain had significantly reduced after Mn 2+ injection to the MCAO model. It is suggested that exogenous Mn 2+ injection may provide enhanced MEMRI detection of oxidative stress and gliosis early after brain ischemia. Manganese may also mediate infarctions at remote brain regions in transient focal cerebral ischemia before delayed secondary damage takes place. © 2008 IEEE.published_or_final_versionThe 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS) 2008, Vancouver, BC., 20-25 August 2008. in Proceedings of the 30th EMBS, 2008, p. 3884-388

    Coronary artery to left ventricle fistula

    Get PDF
    BACKGROUND: Coronary cameral fistulas are an uncommon entity, the etiology of which may be congenital or traumatic. They involve abnormal termination of a coronary artery, usually the right coronary, into a cardiac chamber, usually the right ventricle. CASE PRESENTATION: We describe a case of female patient with severe aortic stenosis and interventricular septal hypertrophy that underwent bioprosthetic aortic valve replacement with concomitant septal myectomy. On subsequent follow-up an abnormal flow traversing the septum into the left ventricle was identified and Doppler interrogation demonstrated a continuous flow, with a predominantly diastolic component, consistent with coronary arterial flow. CONCLUSION: The literature on coronary cameral fistulas is reviewed and the etiology of the diagnostic findings discussed. In our patient, a coronary artery to left ventricle fistula was the most likely explanation secondary to trauma to the septal perforator artery during myectomy. Since the patient was asymptomatic at the time of diagnosis no intervention was recommended and has done well on follow-up

    HURP Expression-Assisted Risk Scores Identify Prognosis Distinguishable Subgroups in Early Stage Liver Cancer

    Get PDF
    Hepatoma up-regulated protein (HURP) is a component of the chromatin-dependent pathway for spindle assembly. We examined the prognostic predictive value of HURP in human hepatocellular carcinoma (HCC).HURP expression was evaluated by immunocytochemistry of fine needle aspirated hepatoma cells in 97 HCC patients with Barcelona Clinic Liver Cancer (BCLC) stage A. Subsequently, these patients underwent partial hepatectomy (n = 18) or radiofrequency ablation (n = 79) and were followed for 2 to 35 months. The clinicopathological parameters were submitted for survival analysis.HURP expression in aspirated HCC cells was detected in 19.6% patients. Kaplan-Meier survival analysis showed that positive HURP expression (P = 0.023), cytological grading ≥3 (P = 0.008), AFP ≥35 ng/mL (P = 0.039), bilirubin ≥1.3 mg/dL (P = 0.010), AST ≥50 U/L (P = 0.003) and ALT ≥35 U/L (P = 0.005) were all associated with a shorter disease-free survival. A stepwise multivariate Cox proportional hazard model revealed that positive HURP expression (HR, 2.334; 95% CI, 1.165-4.679, P = 0.017), AST ≥50 U/L (HR, 3.697; 95% CI, 1.868-7.319, p<0.001), cytological grade ≥3 (HR, 4.249; 95% CI, 2.061-8.759, P<0.001) and tumor number >1 (HR, 2.633; 95% CI, 1.212-5.722, P = 0.014) were independent predictors for disease-free survival. By combining the 4 independent predictors, patients with different risk scores (RS) showed distinguishable disease-free survival (RS≤1 vs. RS = 2, P = 0.001; RS = 2 vs. RS = 3, P<0.001). In contrast, the patients cannot be separated into prognosis distinguishable subgroups by using AJCC/UICC TNM staging system.HCC patients with BCLC stage A can be separated into three prognosis-distinguishable groups by use of a risk score that is based upon HURP expression in aspirated HCC cells, ALT, cytological grade and tumor number

    Phosphatase of Regenerating Liver-3 Localizes to Cyto-Membrane and Is Required for B16F1 Melanoma Cell Metastasis In Vitro and In Vivo

    Get PDF
    BACKGROUND: Phosphatase of regenerating liver-3 (PRL-3) is a member of the novel phosphatases of regenerating liver family, characterized by one protein tyrosine phosphatase active domain and a C-terminal prenylation (CCVM) motif. Though widely proposed to facilitate metastasis in many cancer types, PRL-3's cellular localization and the function of its CCVM motif in metastatic process remain unknown. METHODOLOGY/PRINCIPAL FINDINGS: In the present study, a series of Myc tagged PRL-3 wild type or mutant plasmids were expressed in B16F1 melanoma cells to investigate the relationship between PRL-3's cellular localization and metastasis. With immuno-fluorescence microcopy and cell adhesion/migration assay in vitro, and an experimental passive metastasis model in vivo, we found that CCVM motif is critical for the localization of PRL-3 on cell plasma membrane and the lung metastasis of melanoma. In particular, Cystine170 is the key site for prenylation in this process. CONCLUSIONS/SIGNIFICANCE: These results suggest that cellular localization of PRL-3 is highly correlated with its function in tumor metastasis, and inhibition of PRL-3 prenylation might be a new approach to cancer therapy

    Physics of Neutron Star Crusts

    Get PDF
    The physics of neutron star crusts is vast, involving many different research fields, from nuclear and condensed matter physics to general relativity. This review summarizes the progress, which has been achieved over the last few years, in modeling neutron star crusts, both at the microscopic and macroscopic levels. The confrontation of these theoretical models with observations is also briefly discussed.Comment: 182 pages, published version available at <http://www.livingreviews.org/lrr-2008-10

    Osteointegration of soft tissue grafts within the bone tunnels in anterior cruciate ligament reconstruction can be enhanced

    Get PDF
    Anterior cruciate ligament reconstruction with a soft tissue autograft (hamstring autograft) has grown in popularity in the last 10 years. However, the issues of a relatively long healing time and an inferior histological healing result in terms of Sharpey-like fibers connection in soft tissue grafts are still unsolved. To obtain a promising outcome in the long run, prompt osteointegration of the tendon graft within the bone tunnel is essential. In recent decades, numerous methods have been reported to enhance osteointegration of soft tissue graft in the bone tunnel. In this article, we review the current literature in this research area, mainly focusing on strategies applied to the local bone tunnel environment. Biological strategies such as stem cell and gene transfer technology, as well as the local application of specific growth factors have been reported to yield exciting results. The use of biological bone substitute and physical stimulation also obtained promising results. Artificially engineered tissue has promise as a solution to the problem of donor site morbidity. Despite these encouraging results, the current available evidence is still experimental. Further clinical studies in terms of randomized control trial in the future should be conducted to extrapolate these basic science study findings into clinical practice. © 2009 Springer-Verlag.postprin

    Essential Role of Cdc42 in Ras-Induced Transformation Revealed by Gene Targeting

    Get PDF
    The ras proto-oncogene is one of the most frequently mutated genes in human cancer. However, given the prevalence of activating mutations in Ras and its association with aggressive forms of cancer, attempts to therapeutically target aberrant Ras signaling have been largely disappointing. This lack of progress highlights the deficiency in our understanding of cellular pathways required for Ras-mediated tumorigenesis and suggests the importance of identifying new molecular pathways associated with Ras-driven malignancies. Cdc42 is a Ras-related small GTPase that is known to play roles in oncogenic processes such as cell growth, survival, invasion, and migration. A pan-dominant negative mutant overexpression approach to suppress Cdc42 and related pathways has previously shown a requirement for Cdc42 in Ras-induced anchorage-independent cell growth, however the lack of specificity of such approaches make it difficult to determine if effects are directly related to changes in Cdc42 activity or other Rho family members. Therefore, in order to directly and unambiguously address the role of Cdc42 in Ras-mediated transformation, tumor formation and maintenance, we have developed a model of conditional cdc42 gene in Ras-transformed cells. Loss of Cdc42 drastically alters the cell morphology and inhibits proliferation, cell cycle progression and tumorigenicity of Ras-transformed cells, while non-transformed cells or c-Myc transformed cells are largely unaffected. The loss of Cdc42 in Ras-transformed cells results in reduced Akt signaling, restoration of which could partially rescues the proliferation defects associated with Cdc42 loss. Moreover, disruption of Cdc42 function in established tumors inhibited continued tumor growth. These studies implicate Cdc42 in Ras-driven tumor growth and suggest that targeting Cdc42 is beneficial in Ras-mediated malignancies

    Construction and in vivo assembly of a catalytically proficient and hyperthermostable de novo enzyme

    Get PDF
    Although catalytic mechanisms in natural enzymes are well understood, achieving the diverse palette of reaction chemistries in re-engineered native proteins has proved challenging. Wholesale modification of natural enzymes is potentially compromised by their intrinsic complexity, which often obscures the underlying principles governing biocatalytic efficiency. The maquette approach can circumvent this complexity by combining a robust de novo designed chassis with a design process that avoids atomistic mimicry of natural proteins. Here, we apply this method to the construction of a highly efficient, promiscuous, and thermostable artificial enzyme that catalyzes a diverse array of substrate oxidations coupled to the reduction of H2O2. The maquette exhibits kinetics that match and even surpass those of certain natural peroxidases, retains its activity at elevated temperature and in the presence of organic solvents, and provides a simple platform for interrogating catalytic intermediates common to natural heme-containing enzymes
    corecore