850 research outputs found

    Antonio Prieto: El ciego de Quíos

    Get PDF
    Review of: Antonio Prieto. El Ciego de Quíos. Barcelona, Seix Barral, 1996, 219 pp

    Numerical study of jets produced by conical wire arrays on the Magpie pulsed power generator

    Full text link
    The aim of this work is to model the jets produced by conical wire arrays on the MAGPIE generator, and to design and test new setups to strengthen the link between laboratory and astrophysical jets. We performed the modelling with direct three-dimensional magneto-hydro-dynamic numerical simulations using the code GORGON. We applied our code to the typical MAGPIE setup and we successfully reproduced the experiments. We found that a minimum resolution of approximately 100 is required to retrieve the unstable character of the jet. We investigated the effect of changing the number of wires and found that arrays with less wires produce more unstable jets, and that this effect has magnetic origin. Finally, we studied the behaviour of the conical array together with a conical shield on top of it to reduce the presence of unwanted low density plasma flows. The resulting jet is shorter and less dense.Comment: Accepted for publication in Astrophysics & Space Science. HEDLA 2010 conference procedings. Final pubblication will be available on Springe

    Applying unsupervised learning to resolve evolutionary histories and explore the galaxy-halo connection in IllustrisTNG

    Get PDF
    We examine the effectiveness of identifying distinct evolutionary histories in IllustrisTNG-100 galaxies using unsupervised machine learning with Gaussian Mixture Models. We focus on how clustering compressed metallicity histories and star formation histories produces subpopulations of galaxies with distinct evolutionary properties (for both halo mass assembly and merger histories). By contrast, clustering with photometric colours fail to resolve such histories. We identify several populations of interest that reflect a variety of evolutionary scenarios supported by the literature. Notably, we identify a population of galaxies inhabiting the upper-red sequence, M* > 1010M⊙ that has a significantly higher ex-situ merger mass fraction present at fixed masses, and a star formation history that has yet to fully quench, in contrast to an overlapping, satellite-dominated population along the red sequence, which is distinctly quiescent. Extending the clustering to study four clusters instead of three further divides quiescent galaxies, while star forming ones are mostly contained in a single cluster, demonstrating a variety of supported pathways to quenching. In addition to these populations, we identify a handful of populations from our other clusters that are readily applicable to observational surveys, including a population related to post starburst (PSB) galaxies, allowing for possible extensions of this work in an observational context, and to corroborate results within the IllustrisTNG ecosystem.PostprintPeer reviewe

    Modification of classical electron transport due to collisions between electrons and fast ions

    Full text link
    A Fokker-Planck model for the interaction of fast ions with the thermal electrons in a quasi-neutral plasma is developed. When the fast ion population has a net flux (i.e. the distribution of the fast ions is anisotropic in velocity space) the electron distribution function is significantly perturbed from Maxwellian by collisions with the fast ions, even if the fast ion density is orders of magnitude smaller than the electron density. The Fokker-Planck model is used to derive classical electron transport equations (a generalized Ohm's law and a heat flow equation) that include the effects of the electron-fast ion collisions. It is found that these collisions result in a current term in the transport equations which can be significant even when total current is zero. The new transport equations are analyzed in the context of a number of scenarios including α\alpha particle heating in ICF and MIF plasmas and ion beam heating of dense plasmas

    Food Habits of the Rock Sea Bass, Centropristis philadelphica, in the Western Gulf of Mexico

    Get PDF
    The rock sea bass, Centropristis philadelphica, is a euryphagic, benthic carnivore. Principal prey in decreasing order of importance are: natantian and reptantian decapods, mysids, fishes, stomatopods and polychaetes. As rock sea bass increase in size, crabs and fishes constitute a greater portion of their diet and mysids a smaller portion. Feeding activity is greater during daytime though diurnal dietary compositions are similar. Shrimps are the principal food in every season but are more notable during fall and winter than spring and summer; mysids and crabs are most important in spring, as are fishes in summer. Inshore (\u3c 27 m deep) the primary foods are shrimps, mysids, larval fish and stomatopods; offshore, crabs and fishes dominate the diet. The euryphagic feeding of rock sea bass is similar to other small, co-occurring serranids, and morphologically they fit the description of a benthic forager in convergence of body form. The ability of rock sea bass to utilize temporal-spatially abundant prey probably facilitates their broad bathymetric distribution (4-120 m) and relatively high abundance in the western Gulf of Mexico

    Jet Deflection via Cross winds: Laboratory Astrophysical Studies

    Full text link
    We present new data from High Energy Density (HED) laboratory experiments designed to explore the interaction of a heavy hypersonic radiative jet with a cross wind. The jets are generated with the MAGPIE pulsed power machine where converging conical plasma flows are produced from a cylindrically symmetric array of inclined wires. Radiative hypersonic jets emerge from the convergence point. The cross wind is generated by ablation of a plastic foil via soft-X-rays from the plasma convergence region. Our experiments show that the jets are deflected by the action of the cross wind with the angle of deflection dependent on the proximity of the foil. Shocks within the jet beam are apparent in the data. Analysis of the data shows that the interaction of the jet and cross wind is collisional and therefore in the hydro-dynamic regime. MHD plasma code simulations of the experiments are able to recover the deflection behaviour seen in the experiments. We consider the astrophysical relevance of these experiments applying published models of jet deflection developed for AGN and YSOs. Fitting the observed jet deflections to quadratic trajectories predicted by these models allows us to recover a set of plasma parameters consistent with the data. We also present results of 3-D numerical simulations of jet deflection using a new astrophysical Adaptive Mesh Refinement code. These simulations show highly structured shocks occurring within the beam similar to what was observed in the experimentsComment: Submitted to ApJ. For a version with figures go to http://web.pas.rochester.edu/~afrank/labastro/CW/Jet-Wind-Frank.pd

    Formation of Episodic Magnetically Driven Radiatively Cooled Plasma Jets in the Laboratory

    Full text link
    We report on experiments in which magnetically driven radiatively cooled plasma jets were produced by a 1 MA, 250 ns current pulse on the MAGPIE pulsed power facility. The jets were driven by the pressure of a toroidal magnetic field in a ''magnetic tower'' jet configuration. This scenario is characterized by the formation of a magnetically collimated plasma jet on the axis of a magnetic ''bubble'', confined by the ambient medium. The use of a radial metallic foil instead of the radial wire arrays employed in our previous work allows for the generation of episodic magnetic tower outflows which emerge periodically on timescales of ~30 ns. The subsequent magnetic bubbles propagate with velocities reaching ~300 km/s and interact with previous eruptions leading to the formation of shocks.Comment: 6 pages, 5 figures. Accepted for publication in Astrophysics & Space Scienc

    Formation and Structure of a Current Sheet in Pulsed-Power Driven Magnetic Reconnection Experiments

    Get PDF
    We describe magnetic reconnection experiments using a new, pulsed-power driven experimental platform in which the inflows are super-sonic but sub-Alfv\'enic.The intrinsically magnetised plasma flows are long lasting, producing a well-defined reconnection layer that persists over many hydrodynamic time scales.The layer is diagnosed using a suite of high resolution laser based diagnostics which provide measurements of the electron density, reconnecting magnetic field, inflow and outflow velocities and the electron and ion temperatures.Using these measurements we observe a balance between the power flow into and out of the layer, and we find that the heating rates for the electrons and ions are significantly in excess of the classical predictions. The formation of plasmoids is observed in laser interferometry and optical self-emission, and the magnetic O-point structure of these plasmoids is confirmed using magnetic probes.Comment: 14 pages, 12 figures. Accepted for publication in Physics of Plasma
    corecore