1,201 research outputs found

    Evaluation of planar silicon pixel sensors with the RD53A readout chip for the Phase-2 Upgrade of the CMS Inner Tracker

    Get PDF
    Shared via Kudos: https://www.growkudos.com/publications/10.1088%25252F1748-0221%25252F18%25252F11%25252Fp11015The Large Hadron Collider at CERN will undergo an upgrade in order to increase its luminosity to 7.5 × 10^34 cm^-2s^-1. The increased luminosity during this High-Luminosity running phase, starting around 2029, means a higher rate of proton-proton interactions, hence a larger ionizing dose and particle fluence for the detectors. The current tracking system of the CMS experiment will be fully replaced in order to cope with the new operating conditions. Prototype planar pixel sensors for the CMS Inner Tracker with square 50 μm × 50 μm and rectangular 100 μm × 25 μm pixels read out by the RD53A chip were characterized in the lab and at the DESY-II testbeam facility in order to identify designs that meet the requirements of CMS during the High-Luminosity running phase. A spatial resolution of approximately 3.4 μm (2 μm) is obtained using the modules with 50 μm × 50 μm (100 μm × 25 μm) pixels at the optimal angle of incidence before irradiation. After irradiation to a 1 MeV neutron equivalent fluence of Φeq = 5.3 × 10^15 cm^-2, a resolution of 9.4 μm is achieved at a bias voltage of 800 V using a module with 50 μm × 50 μm pixel size. All modules retain a hit efficiency in excess of 99% after irradiation to fluences up to 2.1 × 10^16 cm^-2. Further studies of the electrical properties of the modules, especially crosstalk, are also presented in this paper.BMWFWandFWF(Austria);FNRSandFWO(Belgium);CERN;MSEandCSF(Croatia);Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); NKFIA K124850, and Bolyai Fellowship of the Hungarian Academy of Sciences (Hungary); DAE and DST (India); INFN (Italy); PAEC (Pakistan); SEIDI, CPAN, PCTI and FEDER(Spain); Swiss Funding Agencies (Switzerland); MST (Taipei); STFC (United Kingdom); DOEandNSF(U.S.A.). This project has received funding from the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement No 884104 (PSI-FELLOW-III-3i) and project AIDA-2020, GA no. 654168. Individuals have received support from HFRI (Greece)

    Measurement of the Higgs boson mass and width using the four-lepton final state in proton-proton collisions at √s =13 TeV

    Get PDF
    A measurement of the Higgs boson mass and width via its decay to two (Formula presented) bosons is presented. Proton-proton collision data collected by the CMS experiment, corresponding to an integrated luminosity of (Formula presented) at a center-of-mass energy of 13 TeV, is used. The invariant mass distribution of four leptons in the on-shell Higgs boson decay is used to measure its mass and constrain its width. This yields the most precise single measurement of the Higgs boson mass to date, (Formula presented), and an upper limit on the width (Formula presented) at 95% confidence level. A combination of the on- and off-shell Higgs boson production decaying to four leptons is used to determine the Higgs boson width, assuming that no new virtual particles affect the production, a premise that is tested by adding new heavy particles in the gluon fusion loop model. This result is combined with a previous CMS analysis of the off-shell Higgs boson production with decay to two leptons and two neutrinos, giving a measured Higgs boson width of (Formula presented), in agreement with the standard model prediction of 4.1 MeV. The strength of the off-shell Higgs boson production is also reported. The scenario of no off-shell Higgs boson production is excluded at a confidence level corresponding to 3.8 standard deviations

    Luminosity determination using Z boson production at the CMS experiment

    Get PDF
    The measurement of Z boson production is presented as a method to determine the integrated luminosity of CMS data sets. The analysis uses proton–proton collision data, recorded by the CMS experiment at the CERN LHC in 2017 at a center-of-mass energy of 13 TeV . Events with Z bosons decaying into a pair of muons are selected. The total number of Z bosons produced in a fiducial volume is determined, together with the identification efficiencies and correlations from the same data set, in small intervals of 20 pb-1 of integrated luminosity, thus facilitating the efficiency and rate measurement as a function of time and instantaneous luminosity. Using the ratio of the efficiency-corrected numbers of Z bosons, the precisely measured integrated luminosity of one data set is used to determine the luminosity of another. For the first time, a full quantitative uncertainty analysis of the use of Z bosons for the integrated luminosity measurement is performed. The uncertainty in the extrapolation between two data sets, recorded in 2017 at low and high instantaneous luminosity, is less than 0.5%. We show that the Z boson rate measurement constitutes a precise method, complementary to traditional methods, with the potential to improve the measurement of the integrated luminosity

    Search for new physics in high-mass diphoton events from proton-proton collisions at √s = 13 TeV

    Get PDF
    Results are presented from a search for new physics in high-mass diphoton events from proton-proton collisions at √s = 13 TeV. The data set was collected in 2016–2018 with the CMS detector at the LHC and corresponds to an integrated luminosity of 138 fb−1. Events with a diphoton invariant mass greater than 500 GeV are considered. Two different techniques are used to predict the standard model backgrounds: parametric fits to the smoothly-falling background and a first-principles calculation of the standard model diphoton spectrum at next-to-next-to-leading order in perturbative quantum chromodynamics calculations. The first technique is sensitive to resonant excesses while the second technique can identify broad differences in the invariant mass shape. The data are used to constrain the production of heavy Higgs bosons, Randall-Sundrum gravitons, the large extra dimensions model of Arkani-Hamed, Dimopoulos, and Dvali (ADD), and the continuum clockwork mechanism. No statistically significant excess is observed. The present results are the strongest limits to date on ADD extra dimensions and RS gravitons with a coupling parameter greater than 0.1

    Search for heavy neutral resonances decaying to tau lepton pairs in proton-proton collisions at s=13 TeV

    Get PDF
    A search for heavy neutral gauge bosons ((Formula presented)) decaying into a pair of tau leptons is performed in proton-proton collisions at (Formula presented) at the CERN LHC. The data were collected with the CMS detector and correspond to an integrated luminosity of (Formula presented). The observations are found to be in agreement with the expectation from standard model processes. Limits at 95% confidence level are set on the product of the (Formula presented) production cross section and its branching fraction to tau lepton pairs for a range of (Formula presented) boson masses. For a narrow resonance in the sequential standard model scenario, a (Formula presented) boson with a mass below 3.5 TeV is excluded. This is the most stringent limit to date from this type of search

    Search for bottom quark associated production of the standard model Higgs boson in final states with leptons in proton-proton collisions at √s = 13 TeV

    Get PDF
    This Letter presents the first search for bottom quark associated production of the standard model Higgs boson, in final states with leptons. Higgs boson decays to pairs of tau leptons and pairs of leptonically decaying W bosons are considered. The search is performed using data collected from 2016 to 2018 by the CMS experiment in proton-proton collisions at a centre-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 138fb−1. Upper limits at the 95% confidence level are placed on the signal strength for Higgs boson production in association with bottom quarks; the observed (expected) upper limit is 3.7 (6.1) times the standard model prediction

    Search for vector-like leptons with long-lived particle decays in the CMS muon system in proton-proton collisions at s\sqrt{\text{s}} = 13 TeV

    Get PDF

    Measurement of the Bs0 = μ+μ- decay properties and search for the B0 → μ+μ- decay in proton-proton collisions at √s=13 TeV

    Get PDF
    Measurements are presented of the B0s & RARR; & mu;+& mu;- branching fraction and effective lifetime, as well as results of a search for the B0 & RARR; & mu;+& mu;- decay in proton-proton collisions at & RADIC;s =13 TeV at the LHC. The analysis is based on data collected with the CMS detector in 2016-2018 corresponding to an integrated luminosity of 140 fb-1. The branching fraction of the B0s & RARR; & mu;+& mu;- decay and the effective B0s meson lifetime are the most precise single measurements to date. No evidence for the B0 & RARR; & mu;+& mu;- decay has been found. All results are found to be consistent with the standard model predictions and previous measurements. & COPY; 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons .org /licenses /by /4 .0/). Funded by SCOAP3

    Elliptic anisotropy measurement of the f0(980) hadron in proton-lead collisions and evidence for its quark-antiquark composition

    Get PDF
    Despite the f0(980) hadron having been discovered half a century ago, the question about its quark content has not been settled: it might be an ordinary quark-antiquark (qq) meson, a tetraquark (qqqq) exotic state, a kaon-antikaon (KK) molecule, or a quark-antiquark-gluon (qqg) hybrid. This paper reports strong evidence that the f0(980) state is an ordinary qq meson, inferred from the scaling of elliptic anisotropies (v2) with the number of constituent quarks (nq), as empirically established using conventional hadrons in relativistic heavy ion collisions. The f0(980) state is reconstructed via its dominant decay channel f0(980) → π+π−, in proton-lead collisions recorded by the CMS experiment at the LHC, and its v2 is measured as a function of transverse momentum (pT). It is found that the nq = 2 (qq state) hypothesis is favored over nq = 4 (qqqq or KK states) by 7.7, 6.3, or 3.1 standard deviations in the pT < 10, 8, or 6 GeV/c ranges, respectively, and over nq = 3 (qqg hybrid state) by 3.5 standard deviations in the pT < 8 GeV/c range. This result represents the first determination of the quark content of the f0(980) state, made possible by using a novel approach, and paves the way for similar studies of other exotic hadron candidates

    Measurement of Energy Correlators inside Jets and Determination of the Strong Coupling Formula Presented

    Get PDF
    Energy correlators that describe energy-weighted distances between two or three particles in a hadronic jet are measured using an event sample of s\sqrt{s}=13 TeV proton-proton collisions collected by the CMS experiment and corresponding to an integrated luminosity of 36.3 fb1^{−1}. The measured distributions are consistent with the trends in the simulation that reveal two key features of the strong interaction: confinement and asymptotic freedom. By comparing the ratio of the measured three- and two-particle energy correlator distributions with theoretical calculations that resum collinear emissions at approximate next-to-next-to-leading-logarithmic accuracy matched to a next-to-leading-order calculation, the strong coupling is determined at the Z boson mass: αS_S (mZ_Z)=0.1229 0.00400.0050\frac{0.0040}{-0.0050} , the most precise αS_SmZ_Z value obtained using jet substructure observable
    corecore